
Computer Science 20

Second Research Project This assignment replaces the previous assignment.

Your work is due Friday, April 22 by 5 o’clock.

Choose one of the questions below about the performance of a divide-and-conquer

algorithm. Implement the algorithm and run experiments to find out the answer.

Write a 2-5 page paper describing your experiments and your results.

Strassen’s Algorithm To answer one of the first two questions, you will have to

implement a version of Strassen’s algorithm that works on general matrix sizes n×m,

not just n = 2k. Here are some ideas about how to modify it:

• Pad out A and B by adding zeros to the bottom rows and right-most columns,

to get square matrices of size n = 2k. Then run Strassen’s algorithm on the

larger arrays; then pull out the answer C from the large result matrix.

• For square matrices: At each recursive stage: if n is even, split the arrays into

quarters in the usual way and recur. If n is odd, make it even by adding an

extra row and column of zeros. Then split into same-sized quarters and recur.

Strip off the row/column from the result C before returning.

• It is also possible to strip off the odd row and column, and just multiply them

separately after recurring on the smaller matrices. This is faster, but you have

to figure out how matrix multiplication works in this situation.

• For odd-sized matrices n × m, you can add an extra row and/or column sepa-

rately depending on dimensions n and m.

Here are the questions.

1. Theory tells us that there must be a smallest n0 such that Strassen’s algorithm

costs less than the classic 3-loops algorithm. Where is that cutoff if you define

cost to be the number of scalar arithmetic operations on matrix elements?

Where is that cutoff if you define cost to be CPU time?

It is ok to restrict to square matrices for this question. Warning: depending

on your implementation, you may not be able to find a cutoff. If so, say so.

Whether you find it or not, you should compare the cost of these two strategies

for values of n that a range of at least three powers of 2: 2k, 2k+1, 2k+2. These

cost functions are by no means polynomials, and you shouldn’t use regression

analysis to summarize the results.

1



2. What is the penalty paid by Strassen’s algorithm for coping with odd-sized

matrices? For example, if you use the “pad with zeros” strategy, then the

cost will be a step function that steps up at powers of 2. How far does this

function get from a straight line between the power-of-2 costs, for general n, m?

If you use one of the other coping strategies you will get a weird sort-of-stepping

function – again, how far does it get from the baseline cost as the matrix shapes

vary from the ideal? I suggest keeping n constant and then varying m to adjust

the aspect ratio of the two matrices. Try this for more than one n, though.

Closest pair of points. I have created a Point class that you can download from

www.cs.amherst.edu/∼cs20/Point.java. This class provides x,y coordinates for

2-d points. Feel free to use it, modify it, or write your own class.

1. Fix the incorrect algorithm in the book, so that the divide step works even

when there are duplicate x coordinates. If you use a simple fix, it is no longer

O(n log n) worst case. Find out the new worst case cost, using integer coordi-

nates so you can control the number of duplicates in the set (for example if there

are n = 1000 points you can use integers in the range 1..10, 1..100, 1..1000000,

etc. Find out new cost as a function of n and of the number of duplicates.

2. Fix the algorithm so it really does have O(n logn) worst case, even if there are

duplicate x coordinates. I suggest using L. McGeoch’s Mergesort-style modifi-

cation that takes the points sorted by X coordinates as a parameter. It returns

the points sorted by Y coordinates, then applies a “merge” operation to build

Y and S. Since the function must also return a distance (the smallest distance it

finds), you will have to figure out how to return both the distance and the array

(the distance could be in array index 0, for example) Then run experiments to

find out how much you “pay” for this worst cost bound: what is the difference

in costs of the divide step and the marry step, of the book-version and your

correct version?

3. The whole point of pre-sorting X and Y , is to keep an O(n log n) worst case

bound. But what if you implemente a randomized algorithm with an O(n log n)

average case bound, that, like randomized quicksort, is robust with respect to

worst-case inputs?

That is, do not pre-sort the point array P to build X and Y . Instead, take P

as a parameter, and partition it like quicksort: select a point at random, and

2



partition P around the x coordinate of that point. Run tests to compare this

average-case strategy to the worst-case strategy – what is the cost difference?

3


