
Computer Science 20

Sorting Research Project This is the first of two projects in this course. A

project counts the same as a test. Your work is due Monday, February 28th by 5

o’clock.

Your mission is to implement one of these algorithms: MergeSort, HeapSort,

or Quicksort. Then run experiments to answer two of the questions below. You

have to answer the first one, and you can pick which one of the other questions to

answer. Write a 2-5 page paper describing your experiments and your results.

1. How does the number of array-element comparisons grow as a function of n?

The program should report how many comparisons c of array elements it per-

forms each time it is run. Insert a counter variable in your program, and print

out both n and c. Then look at the functional relationship c = f(n).

2. How well does number of comparisons predict CPU time? There are a few ways

to tackle this question: Suppose theory tells you that Insertion sort uses 100

times more comparisons than your algorithm at particular problem size n. Is it

program really 100 times slower? (I have written a Java Insertion Sort program

that you can use.) Does increasing by a factor of 100 in comparisons translate

to an increase by a factor of 100 in running time? If you plot comparisons vs

CPU time, do you get a straight line?

3. How much difference is there between best case, average case, and worst case

performance? (Heapsort, Quicksort only). Generate inputs of each category,

and measure the comparison cost of the algorithm as a function of n. How do

these different costs compare?

4. How important are secondary costs? The second most common operation in

most sorting algorithms is data movement, such as swapping two array elements,

or assigning an array element to a variable (or vice versa). Run an experiment

to count comparisons alone, and then comparisons plus data movement oper-

ations. What proportion of the total cost is taken up by comparisons vs data

movements.

Here are some details:

• You can download a copy of my Insertion Sort program from

www.cs.amherst.edu/ccm/cs20/ISort.java

1



• Unless otherwise specified, look at average-case performance. Use Math.random()

to fill an array with random numbers before sorting. For an average-case anal-

ysis, you will need to look at performance over t random trials at each problem

size n. Write your program to take n and t as input. For each t, it generates a

random array of size n, sorts it, and prints out the performance data.

• Problem 1 asks you to look at the growth rate of comparisons vs problem

size. Whichever algorithm you pick, it is Θ(n log n) average case. The question

is how fast c approaches its asymptotic bound. If you plot n vs c/ log n, it

should appear to approach a constant c1 which is the coefficient of the leading

term. Does it approach from above or below? How close is it to its asymptote

(percentage-wise)?

Your n values should span at least 4 orders of magnitude. (That is, the max

value should be at least 1000x the min value of n). Since the inputs are random,

you will need to run several random trials (at least 10) for each input size.

• I expect that most of you will write your program in Java on a Unix system.

Next week I will show you the Unix time command (for timing programs), and

the R data analysis program (for creating graphs and charts). If you are not

an Amherst Student you need to ask IT about getting an account to use these

systems. If you want to write in C, fine. You don’t have to use these tools if

you have a preferred alternative.

• The CPU timer is not reliable for programs taking less than about a 50th of a

second: set n and t so that the programs need at least 0.1 seconds to run, and

then take the average of time/trials.

Your Report Your report should contain

• A mention of the algorithm you implemented and how exactly you counted

operations. What problem sizes you looked at, and how many trials per problem

size. You have to give enough details about your experiment that a reader could

replicate it and expect to get the same results.

• Your results – a page or so to answer each question that you looked at. This

should be in the form of English sentences, with graphs or tables to illustrate

and support your conclusions. You can’t just attach a table of numbers and

call it a result.

2



• A description of any problems or questions that might restrict the generality of

your results. How consistent and reliable is the cpu timer, for example? How

much might another person’s implementation of the same sorting algorithm

vary from yours?

3


