
Engineering a Cache-Oblivious Sorting
Algorithm

GERTH STØLTING BRODAL

University of Aarhus

ROLF FAGERBERG

University of Southern Denmark, Odense

and

KRISTOFFER VINTHER

Systematic Software Engineering A/S

This paper is an algorithmic engineering study of cache-oblivious sorting. We investigate by em-
pirical methods a number of implementation issues and parameter choices for the cache-oblivious
sorting algorithm Lazy Funnelsort and compare the final algorithm with Quicksort, the established
standard for comparison-based sorting, as well as with recent cache-aware proposals. The main re-
sult is a carefully implemented cache-oblivious sorting algorithm, which, our experiments show,
can be faster than the best Quicksort implementation we are able to find for input sizes well within
the limits of RAM. It is also at least as fast as the recent cache-aware implementations included in
the test. On disk, the difference is even more pronounced regarding Quicksort and the cache-aware
algorithms, whereas the algorithm is slower than a careful implementation of multiway Mergesort,
such as TPIE.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Sorting and Searching; B.3.2 [Memory Structures]:
Design styles—Cache memories, virtual memory; E.5 [Files]—Sorting/searching

General Terms: Algorithms, Design, Experimentation, Performance

Authors’ addresses: Gerth Stølting Brodal, BRICS (Basic Research in Computer Science,
www.brics.dk, funded by the Danish National Research Foundation), Department of Computer
Science, University of Aarhus, IT Parken, Åbogade 34, DK-8200 Århus N, Denmark; email:
gerth@brics.dk. Supported by the Carlsberg Foundation (contract number ANS-0257/20). Par-
tially supported by the Future and Emerging Technologies programme of the EU under contract
number IST-1999-14186 (ALCOM-FT). Rolf Fagerberg, Department of Mathematics and Computer
Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark; email:
rolf@imada.sdu.dk. Work done while at University of Aarhus. Partially supported by the Fu-
ture and Emerging Technologies programme of the EU under contract number IST-1999-14186
(ALCOM-FT). Kristoffer Vinther, Systematic Software Engineering A/S, Søren Frichs Vej 39, DK-
8000 Århus C, Denmark; email: academia@kristoffer.vinther.name. Work done while at Univer-
sity of Aarhus.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-6654/2007/ART2.2 $5.00 DOI 10.1145/1227161.1227164 http://doi.acm.org
10.1145/1227161.1227164

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.

2.2

2.2



2 • G. S. Brodal et al.

Additional Key Words and Phrases: Cache-oblivious algorithms, funnelsort, quicksort

ACM Reference Format:
Brodal, G. S., Fagerberg, R., and Vinther, K. 2007. Engineering a cache-oblivious sorting algorithm.
ACM J. Exp. Algor. 12, Article 2.2 (2007), 23 pages DOI 10.1145/1227161.1227164 http://doi.acm.org
10.1145/1227161.1227164

1. INTRODUCTION

Modern computers contain a hierarchy of memory levels, with each level acting
as a cache for the next. Typical components of the memory hierarchy are: reg-
isters, level-1 cache, level-2 cache, level-3 cache, main memory, and disk. The
time it takes to access a level increases for each new level, most dramatically
when going from main memory to disk. Consequently, the cost of a memory
access depends mainly on what is the current lowest memory level containing
the element accessed.

As a consequence, in practice, the memory access pattern of an algorithm
has a major influence on its running time in practice. Since classic asymptotic
analyses of algorithms in the RAM model are unable to capture this, a number of
more elaborate models for analysis have been proposed. The most widely used of
these is the I/O model introduced in Aggarwal and Vitter [1988], which assumes
a memory hierarchy containing two levels, the lower level having size M and
the transfer between the two levels taking place in blocks of B consecutive
elements. The cost of the computation is the number of blocks transferred.
Figure 1 illustrates the RAM and the I/O models.

The strength of the I/O model is that it captures part of the memory hier-
archy while being simple enough to make analyses of algorithms feasible. In
particular, it adequately models the situation where the memory transfer be-
tween two levels of the memory hierarchy dominates the running time, which
is often the case when the size of the data exceeds the size of main memory.

By now, a large number of results for the I/O model exist (see the surveys
[Arge 2001] and [Vitter 2001]). Among the fundamental facts are that in the
I/O model, comparison-based sorting takes �(SortM ,B(N )) I/Os in the worst
case, where SortM ,B(N ) = N

B logM/B
N
B .

More elaborate models for multilevel memory hierarchies have been pro-
posed ([Vitter 2001, Section 2.3] gives an overview), but fewer analyses of al-
gorithms have been done. For these models, as for the I/O model of Aggarwal
and Vitter, algorithms are assumed to know the characteristics of the memory
hierarchy.

Recently, the concept of cache-oblivious algorithms was introduced in Frigo
et al. [1999]. In essence, this designates algorithms formulated in the RAM
model, but analyzed in the I/O model for arbitrary block size B and memory
size M . I/Os are assumed to be performed automatically by an offline optimal
cache replacement strategy. This seemingly simple change has significant con-
sequences: since the analysis holds for any block and memory size, it holds for
all levels of a multilevel memory hierarchy (see [Frigo et al. 1999] for details).
In other words, by optimizing an algorithm to one unknown level of the memory
hierarchy, it is optimized to all levels automatically. Thus, the cache-oblivious

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 3

Fig. 1. The RAM and the I/O models.

model combines in an elegant way the simplicity of the two-level I/O-model
with a coverage of the entire memory hierarchy. An additional benefit is that
the characteristics of the memory hierarchy do not need to be known and do not
need to be hardwired into the algorithm for the analysis to hold. This increases
the portability of the algorithm (a benefit, for example software libraries), as
well as its robustness against changing memory resources on machines running
multiple processes.

In 1999, Frigo et al. introduced the concept of cache-obliviousness and
presented optimal cache-oblivious algorithms for matrix transposition, FFT,
and sorting, and also gave a proposal for static search trees [Prokop 1999]
with search cost matching that of standard (cache-aware) B-trees [Bayer and
McCreight 1972]. Since then, quite a number of results for the model have
appeared, including the following: Cache-oblivious dynamic search trees with
search cost matching B-trees was given in Bender et al. [2000]. Simpler cache-
oblivious search trees with complexities matching that of Bender et al. [2000]
were presented in Bender et al. [2002d], Brodal et al. [2002], and Rahman
et al. [2001], and a variant with worst-case bounds for updates appeared
in Bender et al. [2002d]. Further cache-oblivious dictionary structures have
been given in, Arge et al. [2005c], Bender et al. [2005, 2006], Brodal and
Fagerberg [2006], and Franceschini and Grossi [2003a, 2003b], and further
cache-oblivious sorting results in Brodal and Fagerberg [2002a], Brodal et al.
[2005], Fagerberg et al. [2006], Farzan et al. [2005], and Franceschini [2004].
Cache-oblivious algorithms have been presented for problems in computational
geometry [Agarwal et al. 2003; Arge et al. 2005B; Bender et al. 2002b; Brodal
and Fagerberg 2002a], for scanning dynamic sets [Bender et al. 2002a], for
layout of static trees [Bender et al. 2002a], for search problems on multisets
[Farzan et al. 2005], for dynamic programming [Chowdhury and Ramachan-
dran 2006], and for partial persistence [Bender et al. 2002b]. Cache-oblivious
priority queues have been developed in Arge et al. [2002a] and Brodal and
Fagerberg [2002b], which, in turn, give rise to several cache-oblivious graph
algorithms [Arge et al. 2002a]. Other cache-oblivious graph algorithms appear
in Brodal et al. [2004], Chowdhury and Ramachandran [2004], and Jampala
and Zeh [2005a]. For a further overview of cache-oblivious algorithms, see the
surveys in Arge et al. [2005a] and Brodal [2004].

Some of these results, in particular those involving sorting and algorithms to
which sorting reduces (e.g., priority queues) are proved under the assumption
M ≥ B2, which is also known as the tall-cache assumption. In particular, this
applies to the Funnelsort algorithm in Frigo et al. [1999]. A variant termed

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



4 • G. S. Brodal et al.

Lazy Funnelsort [Brodal and Fagerberg 2002a] works under the weaker tall-
cache assumption M ≥ B1+ε for any fixed ε > 0, at the cost of being a factor 1/ε

worse than the optimal sorting bound �(SortM ,B(N )) when M � B1+ε.
It has been shown [Brodal and Fagerberg 2003] that a tall-cache assump-

tion is necessary for cache-oblivious comparison-based sorting algorithms, in
the sense that the trade-off attained by Lazy Funnelsort between strength of
assumption and cost for the case M � B1+ε is the best possible. This demon-
strates a separation in power between the I/O model and the cache-oblivious
model for comparison-based sorting. Separations have also been shown for
permuting [Brodal and Fagerberg 2003] and for comparison-based searching
[Bender et al. 2003].

Compared to the abundance of theoretical results described above, empiri-
cal evaluations of the merits of cache-obliviousness are more scarce. Results
exist for areas such as basic matrix algorithms [Frigo et al. 1999], dynamic
programming algorithms [Chowdhury and Ramachandran 2006], and search
trees [Brodal et al. 2002; Ladner et al. 2002; Rahman et al. 2001]. They con-
clude that in these areas, the efficiency of cache-oblivious algorithms surpasses
classic RAM algorithms, and competes well with that of algorithms exploiting
knowledge about the memory hierarchy parameters.

In this paper, we investigate the practical value of cache-oblivious methods
in the area of sorting. We focus on the Lazy Funnelsort algorithm, since we be-
lieve it has the biggest potential for an efficient implementation among the cur-
rent proposals for I/O-optimal cache-oblivious sorting algorithms. We explore a
number of implementation issues and parameter choices for the cache-oblivious
sorting algorithm Lazy Funnelsort, and settle the best choices through experi-
ments. We then compare the final algorithm with tuned versions of Quicksort,
which is generally acknowledged to be the fastest all-round comparison-based
sorting algorithm, as well as with recent cache-aware proposals. Note that the
I/O cost of Quicksort is �( N

B log2
N
M ), which only differs from the optimal bound

SortM ,B(N ) by the base of the logarithm.
The main result is a carefully implemented cache-oblivious sorting algo-

rithm, which our experiments show can be faster than the best Quicksort im-
plementation we have been able to find for input sizes well within the limits
of RAM. It is also just as fast as the best of the recent cache-aware implemen-
tations included in the test. On disk, the difference is even more pronounced
regarding Quicksort and the cache-aware algorithms, whereas the algorithm is
slower than a careful implementation of multiway Mergesort such as TPIE [De-
partment of Computer Science, Duke University 2002].

These findings support—and extend to the area of sorting—the conclusion of
the previous empirical results on cache-obliviousness. This conclusion is that
cache-oblivious methods can lead to actual performance gains over classic algo-
rithms developed in the RAM model. The gains may not always entirely match
those of the best algorithm tuned to a specific memory hierarchy level, but, on
the other hand, appear to be more robust, applying to several memory hierarchy
levels simultaneously.

One observation of independent interest made in this paper is that for the
main building block of Funnelsort, namely the k-merger, there is no need for

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 5

a specific memory layout (contrary to its previous descriptions [Brodal and
Fagerberg 2002a; Frigo et al. 1999]) for its analysis to hold. Thus, the essential
feature of the k-merger definition is the sizes of the buffers and not the layout
in memory.

The rest of this paper is organized as follows: In Section 2, we describe Lazy
Funnelsort. In Section 3, we describe our experimental setup. In Section 4,
we develop our optimized implementation of Funnelsort and, in Section 5, we
compare it experimentally to a collection of existing efficient sorting algorithms.
In Section 6, we summarize our findings.

The work presented is based on the M.Sc. thesis [Vinther 2003].

2. FUNNELSORT

Five algorithms for cache-oblivious sorting seem to have been proposed so
far: Funnelsort [Frigo et al. 1999], its variant Lazy Funnelsort [Brodal and
Fagerberg 2002a], a distribution-based algorithm [Frigo et al. 1999], an implicit
algorithm [Franceschini 2004], and an adaptive sorting algorithm [Brodal
et al. 2005].

These all have the same optimal bound SortM ,B(N ) on the number of I/Os
performed, but have rather different structural complexity, with Lazy Funnel-
sort being the simplest. As simplicity of description often translates into smaller
and more efficient code (for algorithms of the same asymptotic complexity), we
find the Lazy Funnelsort algorithm the most promising with respect to practical
efficiency. In this paper, we choose it as the basis for our study of the practi-
cal feasibility of cache-oblivious sorting. We now review the algorithm briefly
and give an observation, which further simplifies it. For the full details of the
algorithm, see Brodal and Fagerberg [2002a].

The algorithm is based on binary mergers. A binary merger takes, as in-
put, two sorted streams of elements and delivers, as output, the sorted stream
formed by merging these. One merge step moves an element from the head
of one of the input streams to the tail of the output stream. The heads of the
two input streams and the tail of the output stream reside in buffers holding
a limited number of elements. A buffer consists of an array of elements, a field
storing the capacity of the buffer, and pointers to the first and last elements in
the buffer. Binary mergers can be combined to binary merge trees by allowing
the output buffer of one merger be an input buffer of another—in other words,
binary merge trees are binary trees with mergers at the nodes and buffers at
the edges. The leaves of the tree contain the streams to be merged.

An invocation of a merger is a recursive procedure, which performs merge
steps until its output buffer is full (or both input streams are exhausted). If,
during the invocation, an input buffer becomes empty (but the corresponding
stream is not exhausted), the input buffer is recursively filled by an invocation
of the merger having this buffer as its output buffer. If both input streams
of a merger become exhausted, the corresponding output stream is marked
as exhausted. The procedure (except for the issue of exhaustion) is shown in
Figure 2 as the procedure FILL(v). A single invocation FILL(r) on the root r of
the merge tree will merge the streams at the leaves of the tree, provided that

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



6 • G. S. Brodal et al.

Fig. 2. The merging algorithm.

Fig. 3. A 16-merger consisting of 15 binary mergers. Shaded regions are the occupied parts of the
buffers.

the output buffer of the root has size at least the sum of the sizes of these
streams.

One particular merge tree is the k-merger. A k-merger consists of k−1 binary
mergers forming a binary tree of optimal height i = �log k�. The tree has k input
streams as leaves, an output buffer of size kd (where d > 1 is a parameter) at
the root, and buffers (of sizes to be defined below) on the edges. A 16-merger is
illustrated in Figure 3.

The sizes of the buffers are defined recursively: Let the depth of a node be
one for the root and one plus the depth of the parent for any other node. Let the
top tree be the subtree consisting of all nodes of depth, at most, �i/2�, and let
the subtrees rooted by nodes at depth �i/2� + 1 be the bottom trees. The edges
between nodes at depth �i/2� and depth �i/2� + 1 have associated buffers of
size α�d3/2�, where α is a positive parameter,1 and the sizes of the remaining
buffers are defined by recursion on the top and the bottom trees.

The k-merger structure was defined in Frigo et al. [1999] for use in Funnel-
sort. The algorithm FILL(v) described above for invoking a k-merger appeared
in Brodal and Fagerberg [2002a] and is a simplification of the original one.

In the descriptions in Brodal and Fagerberg [2002a] and Frigo et al. [1999],
a k-merger is laid out recursively in memory (according to the so-called
van Emde Boas layout [Prokop 1999]), in order to achieve I/O efficiency. We
observe here that this is not necessary: In the proof of Lemma 1 in Brodal and
Fagerberg [2002a], the central idea is to follow the recursive definition down
to a specific size k̄ of trees, and then consider the number of I/Os needed to

1The parameter α is introduced in this paper for tuning purposes.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 7

Table I. Specifications of the Machines Used in This Paper

Pentium 4 Pentium III MIPS 10000 AMD Athlon Itanium 2

Architecture type Modern CISC Classic CISC RISC Modern CISC EPIC
Operation system Linux v. 2.4.18 Linux v. 2.4.18 IRIX v. 6.5 Linux 2.4.18 Linux 2.4.18
Clock rate 2400 MHz 800 MHz 175 MHz 1333 MHz 1137 MHz
Address space 32 bit 32 bit 64 bit 32 bit 64 bit
Pipeline stages 20 12 6 10 8
L1 data cache size 8 KB 16 KB 32 KB 128 KB 32 KB
L1 line size 128 B 32 B 32 B 64 B 64 B
L1 associativity 4-way 4-way 2-way 2-way 4-way
L2 cache size 512 KB 256 KB 1024 KB 256 KB 256 KB
L2 line size 128 B 32 B 32 B 64 B 128 B
L2 associativity 8-way 4-way 2-way 8-way 8-way
TLB entries 128 64 64 40 128
TLB associativity full 4-way 64-way 4-way full
TLB miss handling hardware hardware software hardware ?
RAM size 512 MB 256 MB 128 MB 512 MB 3072 MB

load this k̄-merger and one block for each of its output streams into memory.
However, this price is not (except for constant factors) changed if we, for each
of the k̄ − 1 nodes of the k̄-merger, have to load one entire block holding the
node and one block for each of the input and output buffers of the node. From
this follows that the proof holds true, no matter how the k-merger is laid out.2

Hence, the crux of the definition of the k-merger is the sizes of the buffers, not
the layout in memory.

To sort N elements, Lazy Funnelsort first recursively sorts N 1/d segments of
size N 1−1/d of the input and then merges these using an N 1/d merger. A proof
that this is an I/O optimal algorithm can be found in Brodal and Fagerberg
[2002a] and Frigo et al. [1999].

3. METHODOLOGY

As said, our goal is first to develop a good implementation of Funnelsort by
finding good choices for design options and parameter values through empir-
ical investigation and then to compare its efficiency to that of Quicksort—the
established standard for comparison-based sorting algorithms—as well as to
those of recent cache-aware proposals.

To ensure robustness of the conclusions, we perform all experiments on
three rather different architectures, namely Pentium 4, Pentium III, and
MIPS 10000. These are representatives of the modern CISC, the classic CISC,
and the RISC type of computer architecture, respectively. In the final compari-
son of algorithms, we add the AMD Athlon (a modern CISC architecture) and
the Intel Itanium 2 (denoted an EPIC architecture by Intel, for explicit parallel
instruction-set computing) for even larger coverage. The specifications of all
five machines3 used can be seen in Table I.

2However, the (entire) k-merger should occupy a contiguous segment of memory in order for the
complexity proof (Theorem 2 in Brodal and Fagerberg [2002a]) of Funnelsort itself to be valid.
3In addition, the Itanium 2 machine has 3072 KB of L3 cache, which is 12-way associative and has
a cache-line size of 128 B.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



8 • G. S. Brodal et al.

Our programs are written in C++ and compiled, using maximal optimization,
by GCC v. 3.3.2 (Pentiums 4 and III, AMD Athlon), GCC v. 3.1.1 (MIPS 10000),
or the Intel C++ compiler v. 7.0 (Itanium 2).

We use three element types: integers, records containing one integer and
one pointer, and records of 100 bytes. The first type is commonly used in ex-
perimental papers, but we do not find it particularly realistic, as keys normally
have associated information. The second type models sorting of small records,
as well as key-sorting (i.e., sorting of key-pointer pairs, without movement of
the actual data) of large records. The third type models sorting of medium-sized
records and is the data type used in the Datamation Benchmark [Gray 2003]
originating from the database community.

We mainly consider uniformly distributed keys, but also try skewed inputs
such as almost sorted data, and data with few distinct key values, to ensure
robustness of the conclusions. To keep the experiments during the engineering
phase (Section 4) tolerable in number, we only use the second data type and
the uniform distribution, believing that tuning based on these will transfer to
other situations.

We use the drand48 family of C library functions to generate random values.
Our performance metric is wall clock time, as measured by the gettimeofday
C library function.

In the engineering phase, we keep the code for testing the various imple-
mentation parameters as similar as possible, even though this generality could
entail some overhead. After judging what are the best choices for these param-
eters, we implement a clean version of the resulting algorithm and use this in
the final comparison against existing sorting algorithms.

The total number of experiments we perform is rather large. In this paper,
we concentrate on summing up our findings, and show only a representative
set of plots of experimental data. Further details and a full set of plots (close to
a hundred) can be found in Vinther [2003]. The entire code for the experiments
in Sections 4 and 5 is available online at The JEA Research Code Repository4

and Vinther [2003]. The code for the experiments in Section 5 (including our
final, tuned Lazy Funnelsort implementation) is also published with the current
paper.

4. ENGINEERING LAZY FUNNELSORT

We consider a number of design and parameter choices for our implementa-
tion of Lazy Funnelsort. We group them as indicated by the following sub-
sections. To keep the number of experiments within realistic limits, we set-
tle the choices one by one, in the order presented here. We test each particu-
lar question through experiments exercising only parts of the implementation
and/or by fixing the remaining choices at hopefully reasonable values while
varying the parameter under investigation. In this section, we summarize the
results of each set of experiments—the complete set of plots can be found in
Vinther [2003].

4http://www.acm.org/jea/repository/

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 9

Regarding notation: α and d are the parameters from the definition of the
k-merger (see Section 2) and z denotes the degree of the basic mergers (see
Section 4.3).

4.1 k-Merger Structure

As noted in Section 2, no particular layout is needed for the analysis of Lazy
Funnelsort to hold. However, some layout has to be chosen and the choice could
affect the running time. We consider BFS, DFS, and vEB layout. We also con-
sider having a merger node stored along with its output buffer, or storing nodes
and buffers separately (each part having the same layout).

The usual tree navigation method is by pointers. However, for the three
layouts above, implicit navigation using arithmetic on node indices is possible—
this is well-known for BFS [Williams 1964] and arithmetic expressions for DFS
and vEB layouts can be found in Brodal et al. [2002]. Implicit navigation saves
space at the cost of more CPU cycles per navigation step. We consider both
pointer-based and implicit navigation.

We try two coding styles for the invocation of a merger, namely, the straight-
forward recursive implementation, and an iterative version. To control the form-
ing of the layouts, we make our own allocation function, which starts by acquir-
ing enough memory to hold the entire merger. We test the efficiency of our
allocation function by also trying out the default allocator in C++. Using this,
we have no guarantee that the proper memory layouts are formed, so we only
try pointer-based navigation in these cases.

4.1.1 Experiments. We test all combinations of the choices described above,
except for a few infeasible ones (e.g. implicit navigation with the default allo-
cator), giving a total of 28 experiments on each of the three machines. One
experiment consists of merging k streams of k2 elements in a k-merger with
z = 2, α = 1, and d = 2. For each choice, we for values of k in [15; 270] measure
the time for �20, 000, 000/k3� such merges.

4.1.2 Results. On all architectures, the best combination is (1) recursive
invocation, (2) pointer-based navigation, (3) vEB layout, (4) nodes and buffers
laid out separately, and (5) allocation by the standard allocator. The time used
for the slowest combination is up to 65% longer and the difference is largest on
the Pentium 4 architecture. The largest gain occurs by choosing the recursive
invocation over the iterative; this gain is most pronounced on the Pentium 4
architecture, which is also the most sophisticated (e.g., it has a special return
address stack holding the address of the next instruction to be fetched after
returning from a function call, for its immediate execution). The vEB layout
ensures around 10% reduction in time, which shows that the spatial locality
of the layout is not entirely without influence, in practice, despite its lack of
influence on the asymptotic analysis. The implicit vEB layout is slower than its
pointer-based version, but less so on the Pentium 4 architecture, which also is
the fastest of the processors and most likely the one least strained by complex
arithmetic expressions.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



10 • G. S. Brodal et al.

4.2 Tuning the Basic Mergers

The “inner loop” in the Lazy Funnelsort algorithm is the code performing the
merge step in the nodes of the k-merger. We explore several ideas for efficient
implementation of this code. One idea tested is to compute the minimum of the
numbers of elements left in each input buffer and the space left in the output
buffer. Merging can proceed for at least that many steps without checking the
state of the buffers, thereby eliminating one branch from the core-merging loop.
We also try several hybrids of this idea and the basic merger.

This idea will not be a gain (rather, the minimum computation will consti-
tute an overhead) in situations where one input buffer stays small for many
merge steps. For this reason, we also implement the optimal merging algo-
rithm of [Hwang and Lin 1972; Knuth 1998], which has higher overhead, but is
an asymptotic improvement when merging sorted lists of very different sizes.
To counteract its overhead, we also try a hybrid solution, which invokes the
Hwang–Lin algorithm only when the contents of the input buffers are skewed
in size.

4.2.1 Experiments. We run the same experiment as in Section 4.1. The
values of α and d influence the sizes of the smallest buffers in the merger.
These smallest buffers occur on every second level of the merger, so any node
has one of these as either input or output buffer, making their size affect the
heuristics above. For this reason, we repeat the experiment for (α, d ) equal to
(1, 3), (4, 2.5), and (16, 1.5). These have smallest buffer sizes of 8, 23, and 45,
respectively.

4.2.2 Results. The Hwang–Lin algorithm has, as expected, a large over-
head (a factor of three for the nonhybrid version). Somewhat to our surprise,
the heuristic that calculates minimum sizes is not competitive, being between
15 and 45% slower than the fastest (except on the MIPS 10000 architecture,
where the differences between heuristics are less pronounced). Several hybrids
fare better, but the straightforward solution is consistently the winner in all
experiments. We interpret this as the branch prediction of the CPUs being as
efficient as explicit hand-coding for exploiting predictability in the branches
in this code (all branches, except the result of the comparison of the heads of
the input buffers, are rather predictable). Thus, hand-coding just constitutes
overhead.

4.3 Degree of Basic Mergers

There is no need for the k-merger to be a binary tree. If we, for instance, base it
on four-way basic mergers, we effectively remove every other level of the tree.
This means less element movement and less tree navigation. In particular, a
reduction in data movement seems promising—part of Quicksort’s speed can
be attributed to the fact that for random input, only about every other element
is moved on each level in the recursion, whereas, e.g., binary Mergesort moves
all elements on each level. The price to pay is more CPU steps per merge step
and code complication because of the increase in number of input buffers that
can be exhausted.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 11

Based on considerations of expected register use, element movements, and
number of branches, we try several different ways of implementing multiway
mergers using sequential comparison of the front elements in the input buffers.
We also try a heaplike approach using looser trees [Knuth 1998], which proved
efficient in a previous study by Sanders [2000] of priority queues in RAM. In
total, seven proposals for multiway mergers are implemented.

4.3.1 Experiments. We test the seven implementations in a 120-merger
with (α, d ) = (16, 2), and measure the time for eight mergings of 1,728,000
elements each. The test is run for degrees z = 2, 3, 4, . . . , 9. For comparison, we
also include the binary mergers from the last set of experiments.

4.3.2 Results. All implementations except the looser tree show the same
behavior: As z goes from 2 to 9, the time first decreases, and then increases
again, with minimum attained around 4 or 5. The maximum is 40–65% slower
than the fastest. Since the number of levels for elements to move through
evolves as 1/ log(z), while the number of comparisons for each level evolves
as z, a likely explanation is that there is an initial positive effect resulting from
the decrease in element movements, which is soon overtaken by the increase
in instruction count per level. The looser trees show decrease only in running
time for increasing z, consistent with the fact that the number of comparisons
per element for a traversal of the merger is the same for all values of z, but
the number of levels and, hence, data movements, evolves as 1/ log(z). Unfortu-
nately, the running time is twice as long as for the remaining implementations
for z = 2 and barely catches up at z = 9. Apparently, the overhead is too large to
make looser trees competitive in this setting. The plain binary mergers compete
well, but are beaten by around 10% by the fastest four- or five-way mergers. All
these findings are rather consistent across the three architectures.

4.4 Merger Caching

In the outer recursion of Funnelsort, the same size k-merger is used for all
invocations on the same level of the recursion. A natural optimization would
be to precompute these sizes and construct the needed k-mergers once for each
size. These mergers are then reset each time they are used.

4.4.1 Experiments. We use the Lazy Funnelsort algorithm with (α, d , z) =
(4, 2.5, 2), straightforward implementation of binary basic mergers, and a
switch to std::sort, the STL implementation of Quicksort, for sizes below
αzd = 23. We sort instances ranging in size from 5,000,000 to 200,000,000
elements.

4.4.2 Results. On all architectures merger caching gave a 3–5% speedup.

4.5 Base-Sorting Algorithm

Like in any recursive algorithm, the base case in Lazy Funnelsort is handled
specially. As a natural limit, we require all k-mergers to have height at least
two—this will remove a number of special cases in the code constructing the

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



12 • G. S. Brodal et al.

mergers. Therefore, for input sizes below αzd , we switch to another sorting al-
gorithm. Experiments with the sorting algorithms Insertionsort, Selectionsort,
Heapsort, Shellsort, and Quicksort (in the form of std::sort from the STL li-
brary) on input sizes from 10 to 100 revealed the expected result, namely, that
std::sort (which in the GCC implementation itself switches to Insertionsort
below size 16), is the fastest for all sizes. We, therefore, choose this as the sorting
algorithm for the base case.

4.6 Parameters α and d

The final choices concern the parameters α (factor in buffer size expression)
and d (main parameter defining the progression of the recursion, in the
outer recursion of Funnelsort, as well as in the buffer sizes in the k-merger).
These control the buffer sizes and we investigate their impact on the running
time.

4.6.1 Experiments. For values of d between 1.5 and 3 and for values of α

between 1 and 40, we measure the running time for sorting inputs of various
sizes in RAM.

4.6.2 Results. There is a marked rise in running time when α drops below
10, increasing to a factor of four for α = 1. This effect is particularly strong
for d = 1.5. Smaller α and d give smaller buffer sizes and the most likely
explanation seems to be that the cost of navigating to and invoking a basic
merger is amortized over fewer merge steps when the buffers are smaller. Other
than that, the different values of d appear to behave quite similarly. A sensible
choice appears to be α around 16 and d around 2.5.

5. EVALUATING LAZY FUNNELSORT

In Section 4, we settled the best choices for a number of implementation issues
for Lazy Funnelsort. In this section, we investigate the practical merits of the
resulting algorithm.

We implement two versions: Funnelsort2, which uses binary basic mergers
as described in Section 2, and, Funnelsort4, which uses the four-way basic
mergers found in Section 4.3 to give slightly better results. The remaining
implementation details follow what was declared the best choices in Section 4.
Both implementations use parameters (α, d ) = (16, 2), and use std::sort for
input sizes below 400 (as this makes all k-mergers have a height of at least two
in both implementations).

5.1 Competitors

Comparing algorithms with the same asymptotic running time is a delicate
matter. Tuning of code can often change the constants involved significantly,
which leaves open the question of how to ensure equal levels of engineering in
implementations of different algorithms.

Our choice in this paper is to use Quicksort as the main yardstick. Quick-
sort is known as a very fast general-purpose comparison-based algorithm

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 13

[Sedgewick 1998], and has long been the standard choice of sorting
algorithm in software libraries. Over the last 30 years, many improvements
have been suggested and tried and the amount of practical experience with
Quicksort is probably unique among sorting algorithms. It seems reasonable
to expect implementations in current libraries to be highly tuned. To further
boost confidence in the efficiency of the chosen implementation of Quicksort, we
start by comparing several widely used library implementations, and choose the
best performer as our main competitor. We believe such a comparison will give
a good picture of the practical feasibility of cache-oblivious ideas in the area of
comparison-based sorting.

The implementations we consider are std::sort from the STL library in-
cluded in the GCC v. 3.2 distribution, std::sort from the STL library from
Dinkumware5 included with Intels C++ compiler v.7.0, the implementation by
Sedgewick [1998, Chap. 7], and an implementation of our own, based on a
proposal from Bentley and McIlroy [1993], but tuned slightly further by mak-
ing it simpler for calls on small instances and adding an even more elabo-
rate choice of pivot element for large instances. These algorithms mainly dif-
fer in their partitioning strategies—how meticulously they choose the pivot
element and whether they use two- or three-way partitioning. Two-way par-
titioning allows tighter code, but is less robust when repeated keys are
present.

To gain further insight, we also compare with recent implementations of
cache-aware sorting algorithms aiming for efficiency in either internal or ex-
ternal memory by tunings based on knowledge of the memory hierarchy.

TPIE [Department of Computer Science, Duke University 2002] is a li-
brary for external memory computations and includes highly optimized rou-
tines, for example, scanning and sorting. We choose TPIE’s sorting routine
AMI sort as representative of sorting algorithms efficient in external mem-
ory. The algorithm needs to know the amount of available internal mem-
ory and, following suggestions in the TPIE’s manual, we set it to 192 MB,
which is 50–75% of the physical memory on all machines where it is tested.
The TPIE version available at the time of experiments has a release date of
August 29, 2002. It does not support the MIPS and Itanium architectures
and requires an older version (2.96) of the GCC compiler on the remaining
architectures.

Several recent proposals for cache-aware sorting algorithms in internal mem-
ory exist, including Arge et al [2002b], LaMarca and Ladner [1999], and Xiao
et al. [2000]. Proposals for better exploiting L1 and L2 cache were given in
LaMarca and Ladner [1999]. Improving on their effort, Arge et al [2002b]
give proposals using registers better, and Xiao et al. [2000] give variants of
the algorithms from LaMarca and Ladner [1999] taking the effects of TLB
(Translation Look-aside Buffers) misses and the low associativity of caches
into account.

In this test, we compare against the two Mergesort-based proposals from
LaMarca and Ladner [1999] as implemented by Xiao et al. [2000] (we

5www.dinkumware.com

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



14 • G. S. Brodal et al.

encountered problems with the remaining implementations from Xiao et al.
[2000]), and the R-merge algorithm of Arge et al [2002b]. We use the publicly
available code from Xiao et al. [2000] and code from Arge et al. [2002b] sent to
us by the authors.

5.2 Experiments

We test the algorithms described above on inputs of sizes in the entire RAM
range, as well as on inputs residing on disk. All experiments are performed on
machines with no other users. The influence of background processes is mini-
mized by running each experiment in internal memory 21 times and reporting
the median. In external memory experiments are rather time-consuming and
we run each experiment only once, believing that background processes will
have less impact on these.

In these final experiments, besides the three machines used in Section 3,
we also include the AMD Athlon and the Intel Itanium 2 processor.6 Their
specifications can be seen in Table I. The methodology is as described in
Section 3.

5.3 Results

The plots described in this section are shown in Appendix A. In all graphs, the
y axis shows wall time in seconds divided by n log n, and the x axis shows log n,
where n is the number of input elements.

The comparison of Quicksort implementations appear in Figures A1 and
A2. Three contestants run pretty close, with the GCC implementation as the
overall fastest. It uses a compact two-way partitioning scheme and simplicity
of code here seems to pay off. It is closely followed by our own implementa-
tion (denoted Mix), based on the tuned three-way partitioning of Bentley and
McIlroy. The implementation from Sedgewick’s book (denoted Sedge) follows
closely after, whereas the implementation from the Dinkumware STL library
(denoted Dink) lags rather behind, probably due to a rather involved three-way
partitioning routine. We use the GCC and the Mix implementation as the Quick-
sort contestants in the remaining experiments—the first we choose for pure
speed and the latter for having better robustness with almost no sacrifice in
efficiency.

The main experiments in RAM appear in Figures A3 and A4. The Funnelsort
algorithm with four-way basic mergers is consistently better than the one with
binary basic mergers, except on the MIPS architecture, which has a very slow
CPU. This indicates that the reduced number of element movements really do
outweigh the increased merger complexity, except when CPU cycles are costly
compared to memory accesses.

For the smallest input sizes the best Funnelsort looses to GCC Quicksort
(by 10–40%), but on three architectures it gains as n grows, ending up win-
ning (by approximately the same ratio) for the largest instances in RAM. The

6We only had access to the Itanium machine for a limited period of time and, for this reason, we do
not have results for all algorithms on this architecture.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 15

two architectures where GCC keeps its lead are the MIPS 10000 with its
slow CPU, and the Pentium 4, which features the PC800 bus (decreasing the
access time to RAM), and which has a large cache-line size (reducing effects of
cache latency when scanning data in cache). This can be interpreted as fol-
lows: (1) on these two architectures, CPU cycles rather than cache effects
dominate the running time for sorting, and (2) on architectures where this
is not the case, the theoretically better cache performance of Funnelsort ac-
tually shows through, in practice, at least for a tuned implementation of the
algorithm.

The two cache-aware implementations msort-c and msort-m from Xiao
et al. [2000] are not competitive on any of the architectures. The R-merge
algorithm is competing well and, like Funnelsort, shows its cache efficiency
by having a basically horizontal graph throughout the entire RAM range
on the architectures dominated by cache effects. However, four-way Fun-
nelsort is slightly better than R-merge, except on the MIPS 10000 ma-
chine, where the opposite holds. This machine is a RISC-type architec-
ture and has a large number of registers, something which the R-merge
algorithm is designed to exploit. TPIE’s algorithm is not competitive in
RAM.

The experiments on disk appear in Figure A5, where TPIE is the clear win-
ner. It is optimized for external memory and we suspect, in particular, that
the use of standard techniques for overlapping I/O and CPU activity (double-
buffering and sorting one run while loading the next, techniques which seem
hard to transfer to a cache-oblivious setting) gives it an unbeatable advantage.
However, Funnelsort comes in as second and quite clearly outperforms GCC.
The gain over GCC seems to grow as n grows larger, which is in good corre-
spondence with the difference in the base of logarithms in the I/O complexity
of these algorithms. The algorithms tuned to cache perform notably badly on
disk.

We have only shown plots for uniformly distributed data of the second data
type (records of integer and pointer pairs). The results for the other types
and distributions discussed in Section 3 are quite similar and can be found
in Vinther [2003].

6. CONCLUSION

Through a careful engineering effort, we have developed a tuned implementa-
tion of Lazy Funnelsort, which we have compared empirically with efficient im-
plementations of other comparison-based sorting algorithms. The results show
that our implementation is competitive in RAM, as well as on disk, in par-
ticular in situations where sorting is not CPU bound. Across the many input
sizes tried, Funnelsort was almost always among the two fastest algorithms
and clearly the one adapting most gracefully to changes of level in the memory
hierarchy.

In short, these results show that for sorting, the overhead involved in being
cache-oblivious can be small enough for the theoretical properties to actually
transfer into practical advantages.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



16 • G. S. Brodal et al.

APPENDIX

PLOTS

Fig. A1. Comparison of Quicksort implementations (part 1).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 17

Fig. A2. Comparison of Quicksort implementations (part 2).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



18 • G. S. Brodal et al.

Fig. A3. Results for inputs in RAM (part 1).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 19

Fig. A4. Results for inputs in RAM (part 2).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



20 • G. S. Brodal et al.

Fig. A5. Results for inputs on disk.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 21

ACKNOWLEDGMENTS

We thank Brian Vinter of the Department of Mathematics and Computer Sci-
ence, University of Southern Denmark for access to an Itanium 2 processor.

REFERENCES

AGARWAL, P. K., ARGE, L., DANNER, A., AND HOLLAND-MINKLEY, B. 2003. Cache-oblivious data struc-
tures for orthogonal range searching. In Proc. 19th ACM Symposium on Computational Geometry.
ACM, New York. 237–245.

AGGARWAL, A. AND VITTER, J. S. 1988. The input/output complexity of sorting and related problems.
Communications of the ACM 31, 9, 1116–1127.

ARGE, L. 2001. External memory data structures. In Proc. 9th Annual European Symposium on
Algorithms. LNCS, vol. 2161. Springer, New York. 1–29.

ARGE, L., BENDER, M. A., DEMAINE, E. D., HOLLAND-MINKLEY, B., AND MUNRO, J. I. 2002a. Cache-
oblivious priority queue and graph algorithm applications. In Proc. 34th Annual ACM Symposium
on Theory of Computing. ACM, New York. 268–276.

ARGE, L., CHASE, J., VITTER, J. S., AND WICKREMESINGHE, R. 2002b. Efficient sorting using registers
and caches. ACM Journal of Experimental Algorithmics 7, 9.

ARGE, L., BRODAL, G. S., AND FAGERBERG, R. 2005a. Cache-oblivious data structures. In Handbook
of Data Structures and Applications, D. Mehta and S. Sahni, Eds. CRC Press, Boca Ratom, FL.
Chapter 34.

ARGE, L., BRODAL, G. S., FAGERBERG, R., AND LAUSTSEN, M. 2005b. Cache-oblivious planar orthog-
onal range searching and counting. In Proc. 21st Annual ACM Symposium on Computational
Geometry. ACM, New York. 160–169.

ARGE, L., DE BERG, M., AND HAVERKORT, H. J. 2005c. Cache-oblivious R-trees. In Proc. 21st Annual
ACM Symposium on Computational Geometry. ACM, New York. 170–179.

BAYER, R. AND MCCREIGHT, E. 1972. Organization and maintenance of large ordered indexes. Acta
Informatica 1, 173–189.

BENDER, M., COLE, R., DEMAINE, E., AND FARACH-COLTON, M. 2002a. Scanning and traversing: Main-
taining data for traversals in a memory hierarchy. In Proc. 10th Annual European Symposium
on Algorithms. LNCS, vol. 2461. Springer, New York. 139–151.

BENDER, M., COLE, R., AND RAMAN, R. 2002b. Exponential structures for cache-oblivious algo-
rithms. In Proc. 29th International Colloquium on Automata, Languages, and Programming.
LNCS, vol. 2380. Springer, New York. 195–207.

BENDER, M., DEMAINE, E., AND FARACH-COLTON, M. 2002c. Efficient tree layout in a multilevel
memory hierarchy. In Proc. 10th Annual European Symposium on Algorithms. LNCS, vol. 2461.
Springer, New York. 165–173. Full version at http://arxiv.org/abs/cs/0211010.

BENDER, M. A., DEMAINE, E., AND FARACH-COLTON, M. 2000. Cache-oblivious B-trees. In Proc.
41st Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press,
Washington D.C. 399–409.

BENDER, M. A., DUAN, Z., IACONO, J., AND WU, J. 2002d. A locality-preserving cache-oblivious dy-
namic dictionary. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-
SIAM, New York. 29–39.

BENDER, M. A., BRODAL, G. S., FAGERBERG, R., GE, D., HE, S., HU, H., IACONO, J., AND LÓPEZ-
ORTIZ, A. 2003. The cost of cache-oblivious searching. In Proc. 44th Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE Computer Society Press, Washington D.C.
271–282.

BENDER, M. A., FINEMAN, J. T., GILBERT, S., AND KUSZMAUL, B. C. 2005. Concurrent cache-oblivious
B-trees. In Proc. 17th Annual ACM Symposium on Parallel Algorithms. ACM, New York. 228–
237.

BENDER, M. A., FARACH-COLTON, M., AND KUSZMAUL, B. C. 2006. Cache-oblivious string B-trees.
In Proc. 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
ACM, New York. 233–242.

BENTLEY, J. L. AND MCILROY, M. D. 1993. Engineering a sort function. Software–Practice and
Experience 23, 1, 1249–1265.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



22 • G. S. Brodal et al.

BRODAL, G. S. 2004. Cache-oblivious algorithms and data structures. In Proc. 9th Scandinavian
Workshop on Algorithm Theory. LNCS, vol. 3111. Springer, New York. 3–13.

BRODAL, G. S. AND FAGERBERG, R. 2002a. Cache oblivious distribution sweeping. In Proc. 29th In-
ternational Colloquium on Automata, Languages, and Programming. LNCS, vol. 2380. Springer,
New York. 426–438.

BRODAL, G. S. AND FAGERBERG, R. 2002b. Funnel heap—a cache-oblivious priority queue. In
Proc. 13th Annual International Symposium on Algorithms and Computation. LNCS, vol. 2518.
Springer, New York. 219–228.

BRODAL, G. S. AND FAGERBERG, R. 2003. On the limits of cache-obliviousness. In Proc. 35th Annual
ACM Symposium on Theory of Computing. ACM, New York. 307–315.

BRODAL, G. S. AND FAGERBERG, R. 2006. Cache-oblivious string dictionaries. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, New York. 581–590.

BRODAL, G. S., FAGERBERG, R., AND JACOB, R. 2002c. Cache oblivious search trees via binary trees of
small height. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM,
New York. 39–48.

BRODAL, G. S., FAGERBERG, R., MEYER, U., AND ZEH, N. 2004. Cache-oblivious data structures and
algorithms for undirected breadth-first search and shortest paths. In Proc. 9th Scandinavian
Workshop on Algorithm Theory. LNCS, vol. 3111. Springer, New York. 480–492.

BRODAL, G. S., FAGERBERG, R., AND MORUZ, G. 2005. Cache-aware and cache-oblivious adaptive
sorting. In Proc. 32nd International Colloquium on Automata, Languages, and Programming.
LNCS, vol. 3580. Springer, New York. 576–588.

CHOWDHURY, R. A. AND RAMACHANDRAN, V. 2004. Cache-oblivious shortest paths in graphs using
buffer heap. In Proc. 16th Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures. ACM, New York.

CHOWDHURY, R. A. AND RAMACHANDRAN, V. 2006. Cache-oblivious dynamic programming. In Proc.
17th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, New York. 591–
600.

DEPARTMENT OF COMPUTER SCIENCE, DUKE UNIVERSITY. 2002. TPIE: a transparent parallel I/O en-
vironment. WWW page, http://www.cs.duke.edu/TPIE/.

FAGERBERG, R., PAGH, A., AND PAGH, R. 2006. External string sorting: Faster and cache-oblivious.
In Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 3884.
Springer, New York. 68–79.

FARZAN, A., FERRAGINA, P., FRANCESCHINI, G., AND MUNRO, J. I. 2005. Cache-oblivious comparison-
based algorithms on multisets. In Proc. 13th Annual European Symposium on Algorithms. LNCS,
vol. 3669. Springer, New York. 305–316.

FRANCESCHINI, G. 2004. Proximity mergesort: Optimal in-place sorting in the cache-oblivious
model. In Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms. ACM-SIAM, New
York. 291–299.

FRANCESCHINI, G. AND GROSSI, R. 2003a. Optimal cache-oblivious implicit dictionaries. In Proc.
30th International Colloquium on Automata, Languages, and Programming. LNCS, vol. 2719.
Springer, New York. 316–331.

FRANCESCHINI, G. AND GROSSI, R. 2003b. Optimal worst-case operations for implicit cache-oblivious
search trees. In Proc. 8th International Workshop on Algorithms and Data Structures. LNCS, vol.
2748. Springer, New York. 114–126.

FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-oblivious algorithms.
In Proc. 40th Annual Symposium on Foundations of Computer Science. IEEE Computer Society
Press, Washington D.C. 285–297.

GRAY, J. 2003. Sort benchmark home page. WWW page, http://research.microsoft.com/barc/
SortBenchmark/.

HWANG, F. K. AND LIN, S. 1972. A simple algorithm for merging two disjoint linearly ordered sets.
SIAM Journal on Computing 1, 1, 31–39.

JAMPALA, H. AND ZEH, N. 2005. Cache-oblivious planar shortest paths. In Proc. 32nd International
Colloquium on Automata, Languages, and Programming. LNCS, vol. 3580. Springer, New York.
563–575.

KNUTH, D. E. 1998. The Art of Computer Programming, Vol 3, Sorting and Searching, 2nd ed.
Addison-Wesley, Reading, MA.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.



Engineering a Cache-Oblivious Sorting Algorithm • 23

LADNER, R. E., FORTNA, R., AND NGUYEN, B.-H. 2002. A comparison of cache aware and cache obliv-
ious static search trees using program instrumentation. In Experimental Algorithmics. LNCS,
vol. 2547. Springer, New York. 78–92.

LAMARCA, A. AND LADNER, R. E. 1999. The influence of caches on the performance of sorting.
Journal of Algorithms 31, 66–104.

PROKOP, H. 1999. Cache-oblivious algorithms. M.S. thesis, Massachusetts Institute of Technology.
RAHMAN, N., COLE, R., AND RAMAN, R. 2001. Optimised predecessor data structures for internal

memory. In Proc. 5th International Workshop on Algorithm Engineering. LNCS 2141, 67–78.
SANDERS, P. 2000. Fast priority queues for cached memory. ACM Journal of Experimental Algo-

rithmics 5, 7.
SEDGEWICK, R. 1998. Algorithms in C++: Parts 1–4: Fundamentals, Data Structures, Sorting,

Searching, third ed. Addison-Wesley, Reading, MA. Code available at http://www.cs.princeton.
edu/∼rs/Algs3.cxx1-4/code.txt.

VINTHER, K. 2003. Engineering cache-oblivious sorting algorithms. M.S. thesis, Department of
Computer Science, University of Aarhus, Denmark. Available online at http://kristoffer.

vinther.name/academia/thesis/.
VITTER, J. S. 2001. External memory algorithms and data structures: Dealing with massive data.

ACM Computing Surveys 33, 2, 209–271.
WILLIAMS, J. W. J. 1964. Algorithm 232: Heapsort. Communications of the ACM 7, 347–348.
XIAO, L., ZHANG, X., AND KUBRICHT, S. A. 2000. Improving memory performance of sorting algo-

rithms. ACM Journal of Experimental Algorithmics 5, 3.

Received May 2004; revised September 2006; accepted December 2006

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 2.2, Publication June: 2008.


