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We describe an approximation algorithm for the problem of finding the minimum makespan in a job shop. The 
algorithm is based on simulated annealing, a generalization of the well known iterative improvement approach to 
combinatorial optimization problems. The generalization involves the acceptance of cost-increasing transitions with a 
nonzero probability to avoid getting stuck in local minima. We prove that our algorithm asymptotically converges in 
probability to a globally minimal solution, despite the fact that the Markov chains generated by the algorithm are 
generally not irreducible. Computational experiments show that our algorithm can find shorter makespans than two 
recent approximation approaches that are more tailored to the job shop scheduling problem. This is, however, at the cost 
of large running times. 

W e are concerned with a problem in machine 
scheduling known as the job shop scheduling 

problem (Coffman 1976, French 1982). Informally, 
the problem can be described as follows. We are given 
a set of jobs and a set of machines. Each job consists 
of a chain of operations, each of which needs to be 
processed during an uninterrupted time period of a 
given length on a given machine. Each machine can 
process at most one operation at a time. A schedule is 
an allocation of the operations to time intervals on 
the machines. The problem is to find a schedule of 
minimum length. 

The job shop scheduling problem is among the 
hardest combinatorial optimization problems. Not 
only is it NP-hard, but even among the members of 
the latter class it appears to belong to the more difficult 
ones (Lawler, Lenstra and Rinnooy Kan 1982). Opti- 
mization algorithms for job shop scheduling proceed 
by branch and bound, see, for instance, Lageweg, 
Lenstra and Rinnooy Kan (1977), and Carlier and 
Pinson (1989). Most approximation algorithms use a 
priority rule, i.e., a rule for choosing an operation 
from a specified subset of as yet unscheduled opera- 

tions. Adams, Balas and Zawack (1988) developed 
a shifting bottleneck procedure, which employs an 
ingenious combination of schedule construction and 
iterative improvement, guided by solutions to 
single-machine problems. The approach pursued by 
Adams, Balas and Zawack is strongly tailored to the 
problem at hand. It is based on a fair amount of 
combinatorial insight into the job shop scheduling 
problem, and its implementation requires a certain 
level of programmer sophistication. 

In this paper, we investigate the potential of a more 
general approach based on the easily implementable 
simulated annealing algorithm (Kirkpatrick, Gelatt 
and Vecchi 1983, and Cerny 1985). A similar 
approach was independently investigated by Matsuo, 
Suh and Sullivan (1988). Their controlled search 
simulated annealing method is less general than 
ours in the sense that it uses more problem specific 
neighborhoods. 

The organization of this paper is as follows. In 
Section 1 we give a formal problem definition. In 
Section 2 the basic elements of the simulated anneal- 
ing algorithm are reviewed. In Section 3 we describe 
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the application of simulated annealing to job shop 
scheduling. We prove asymptotic convergence of the 
algorithm to a globally minimal solution by showing 
that the neighborhood structure is such that each 
ergodic set contains at least one global minimum. 
Section 4 contains the results of a computational study 
in which simulated annealing is used to find approxi- 
mate solutions to a large set of instances of the job 
shop scheduling problem. We compare our simulated 
annealing method with three other approaches, i.e., 
time-equivalent iterative improvement, the shifting 
bottleneck procedure of Adams, Balas and Zawack, 
and the controlled search simulated annealing method 
of Matsuo, Suh and Sullivan. In Section 5 we end 
with some concluding remarks. 

1. THE PROBLEM 

We are given a set -f of n jobs, a set X of m machines, 
and a set a of N operations. For each operation 
v E a there is a job J, E /o to which it belongs, a 
machine M, E 4 on which it requires processing, 
and a processing time t, E NJ. There is a binary relation 
-> on a that decomposes a into chains corresponding 
to the jobs; more specifically, if v -> w, then J, = JW, 
and there is no x 4 {v, w} such that v -> x or x -> w. 
The problem is to find a start time s, for each opera- 
tion v E a such that 

max s, + t,, (1) 
vE& 

is minimized subject to 

s >- O for all v E a (2) 

SW - S >, tv if v ->W, v, w E a (3) 

SW - SV ; tv V sV - S tw 

if MV = Mw, v, w Ec. (4) 

It is useful to represent the problem by the disjunctive 
graph model of Roy and Sussmann (1964). The dis- 
junctive graph G = (V, A, E) is defined as follows: 

* V = A U {0, N + I}, where 0 and N + 1 are two 
fictitious operations; the weight of a vertex v is given 
by the processing time tv (to = tN+1 = 0). 

* A = 1(v, w) I v, w E ,- v -> w} U 1(0, w) IwE , 

Av E a: v -> w} U {(v, N + 1) I v E A, Aw E a 

v -> WI. Thus, A contains arcs connecting consecu- 
tive operations of the same job, as well as arcs from 
0 to the first operation of each job and from the last 
operation of each job to N + 1. 

* E = - v, w} I Mv = MW}. Thus, edges in E connect 
operations to be processed by the same machine. 

Figure 1 illustrates the disjunctive graph for a 3-job, 
3-machine instance, where each job consists of three 
operations. 

For each pair of operations v, w E a with v - , 
condition (3) is represented by an arc (v, w) in A. 
Similarly, for each pair of operations v, w E a with 
M, = MW, the disjunctive constraint (4) is represented 
by an edge {v, w} in E, and the two ways to settle the 
disjunction correspond to the two possible orienta- 
tions of the edge. There is an obvious one-to-one 
correspondence between a set of choices in (4) that is 
overall feasible and an orientation of all the edges in 
E for which the resulting digraph is acyclic. The 
objective value (the makespan) of the corresponding 
solution is given by the length of a longest path in this 
digraph. Such a set of orientations decomposes a into 
chains corresponding to the machines, i.e., it defines 
for each machine an ordering or permuation of the 
operations to be processed by that machine. Con- 
versely, a set of machine permutations defines a set of 
orientations of the edges in E, though not necessarily 
one which results in an acyclic digraph. Since the 
longest path in a cyclic digraph has infinite length, we 
can now rephrase the problem as that of finding a set 
of machine permutations that minimizes the longest 
path in the resulting digraph. In Section 3 we use this 
formulation of the problem to find approximate solu- 
tions by simulated annealing. 

2. SIMULATED ANNEALING 

Ever since its introduction, independently by 
Kirkpatrick, Gelatt and Vecchi (1983) and Cerny 

1 2 3~~~~~~~~~~~ 

O~ ~~ a~' " 10 

7 8 9 

Figure 1. The disjunctive graph G of a 3-job 3- 
machine instance. Operations 1, 5 and 9 are 
processed by machine 1, operations 2, 4 and 
8 by machine 2, and operations 3, 6 and 7 
by machine 3; 0 and 10 are the fictitious 
initial and final operations, respectively. 
Thick arrows denote arcs in A, dotted lines 
edges in E. 
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(1985), simulated annealing has been applied to many 
combinatorial optimization problems in such diverse 
areas as computer-aided design of integrated circuits, 
image processing, code design and neural network 
theory; for a review the reader is referred to Van 
Laarhoven and Aarts (1987). The algorithm is based 
on an intriguing combination of ideas from at first 
sight completely unrelated fields of science, viz. com- 
binatorial optimization and statistical physics. On the 
one hand, the algorithm can be considered as a gen- 
eralization of the well known iterative improvement 
approach to combinatorial optimization problems, on 
the other hand, it can be viewed as an analogue of an 
algorithm used in statistical physics for computer sim- 
ulation of the annealing of a solid to its ground state, 
i.e., the state with minimum energy. In this paper, we 
mainly restrict ourselves to the first point of view; 
thus, we first briefly review iterative improvement. 

Generally, a combinatorial optimization problem is 
a tuple (I, W), where R is the set of configurations or 
solutions of the problem, and C: S -11 R the cost 
function (Papadimitriou and Steiglitz 1982). To be 
able to use iterative improvement we need a neigh- 
borhood structure Y: R -- 2'; thus, for each config- 
uration i, XA(i) is a subset of configurations, called the 
neighborhood of i. Neighborhoods are usually defined 
by first choosing a simple type of transition to obtain 
a new configuration from a given one and then defin- 
ing the neighborhood as the set of configurations that 
can be obtained from a given configuration in one 
transition. 

Given the set of configurations, a cost function and 
a neighborhood structure, we can define the iterative 
improvement algorithm as follows. The algorithm 
consists of a number of iterations. At the start of each 
iteration, a configuration i is given and a transition to 
a configuration j E XA(i) is generated. If C(j) < C(i), 
the start configuration in the next iteration is j, 
otherwise it is i. If R is finite and if the transitions are 
generated in some exhaustive enumerative way, then 
the algorithm terminates by definition in a local min- 
imum. Unfortunately, a local minimum may differ 
considerably in cost from a global minimum. Simu- 
lated annealing can be viewed as an attempt to find 
near-optimal local minima by allowing the acceptance 
of cost-increasing transitions. More precisely, if i and 
j E X(i) are the two configurations to choose from, 
then the algorithm continues with configuration j with 
a probability given by mint 1, exp(-(C(j) - C(i))Ic)} 
where c is a positive control parameter, which is grad- 
ually decreased during the execution of the algorithm. 
Thus, c is the analogue of the temperature in the 
physical annealing process. Note that the aforemen- 

tioned probability decreases for increasing values of 
C(j) - C(i) and for decreasing values of c, and cost- 
decreasing transitions are always accepted. 

For a fixed value of c, the configurations that are 
consecutively visited by the algorithm can be seen as 
a Markov chain with transition matrix P = P(c) given 
by (Aarts and Van Laarhoven 1985a, Lundy and Mees 
1986, and Romeo and Sangiovanni-Vincentelli 1985) 

[GjAij(c) if $ 54 i 

Pij (c) IS} (5) 
l- GjkAik(c) if = i, 

k=1 

where the generation probabilities Gij are given by 

I v(z) I if j E X(i) 
G1j(c) = (6) 

0O otherwise, 

and the acceptance probabilities Aij by 

Ai(c) = min{1, exp ((Cj) - C(i)))}. (7) 

The stationary distribution of this Markov chain exists 
and is given by (Aarts and Van Laarhoven 1985a, 
Lundy and Mees 1986, and Romeo and Sangiovanni- 
Vincentelli 1985): 

i(c) = I Xl(i) I Ai0(c) (8 
Ej)=- E I ,/-(j) I A=4(c) 

for some io E _opt where Ropt is the set of globally 
minimal configurations, provided the neighborhoods 
are such that for each pair of configurations (i, j) there 
is a finite sequence of transitions leading from i to j. 
The latter condition is equivalent to the requirement 
that the matrix G be irreducible. It can readily be 
shown that 

[ M om1 if i E Ropt 
lim qi(c) = (9) 
CI lo otherwise. 

We recall that the stationary distribution of the 
Markov chain is defined as the probability distribution 
of the configurations after an infinite number of tran- 
sitions. Thus, we conclude from (9) that the simulated 
annealing algorithm converges with probability 1 to a 
globally minimal configuration if the following con- 
ditions are satisfied: 

* the sequence of values of the control parameter 
converges to 0; 

* the Markov chains generated at each value of c are 
of infinite length; and 

* the matrix G is irreducible. 
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Unfortunately, the neighborhood structure chosen for 
job shop scheduling in Section 3 is such that the 
corresponding matrix G is not irreducible. In that 
case, we can still prove asymptotic convergence pro- 
vided the neighborhoods are such that for each con- 
figuration i there is a finite sequence of transitions 
leading from i to some configuration io E 4op, (Van 
Laarhoven 1988). To do so, we use the fact that in 
every chain the recurrent configurations can be 
divided uniquely into irreducible ergodic sets Sl, 
Y2, ..., 5T. In addition to the ergodic sets there 
is a set S9 of transient configurations from which 
configurations in the ergodic sets can be reached (but 
not vice versa). Note that if the neighborhoods satisfy 
the aforementioned condition, then each 5Y, contains 
at least one globally minimal configuration. 

Now consider the sequence of configurations con- 
stituting the Markov chain associated with P(c). There 
are two possibilities: either the Markov chain starts in 
a transient configuration or it does not. In the latter 
case, the configurations constituting the Markov chain 
all belong to the same irreducible ergodic set 5t and 
we can prove asymptotic convergence as before, with 
M replaced by St. On the other hand, if the Markov 
chain starts in a transient configuration, it will even- 
tually "land" (Feller 1950) in an ergodic set 5t, t E 

fl, ..., T), though it is not a priori known which one. 
The line of reasoning described above can then be 
applied again. 

We can make the preceding arguments more precise 
by introducing the notion of a stationary matrix Q, 
whose elements qjj are defined by 

qij = lim Pr{X(k) =j I X(0) = i}. (10) 
k-+oo 

Using the results in Chapter 15, Sections 6-8 of Feller, 
we obtain 

0 ifj E or i E tj Yt 
for some t E{,.. ., T, 

q-j= Aio(c) if i, jE Yt( 
alEl(=-9,,Ai,,I(c) for some t E I 1,. . . ., T), 

| Awo(c) if i E-- jEE t 
X"t Es>tA1(c) for some tE {1,.. . T, 

where xit is the probability that the Markov chain, 
starting from the transient configuration i, eventually 
reaches the ergodic set Yt. 

From ( 11) we obtain, for a recurrent configuration 

jE5'9X 

0 < lim PrIX(k) =j = E PrIX(O) = i} * qj 
k-~~~~~~ooi 

= ( E Pr{X(O) = ix xi, + E PrIX(O) =i 

A10j(c) 
A101(c) 

Z5 Ai,,j(c) ( 12) 

Using (7) we find 

lim Aioj(c) 
- 0 (13) 

ifj E Yt, j I Mopt. Consequently, 

limcjO(limk,0- Pr{X(k) = j) = 0 

for any transient or nonglobally minimal recurrent 
configuration j. In other words 

lim(lim Pr{X(k) E =opt = 1 (14) 
c4O kk--oo 

where M 'pt denotes the nonempty set of globally min- 
imal recurrent configurations. 

Some of the conditions for asymptotic convergence, 
as, for instance, the infinite length of Markov chains, 
cannot be met in practice. In any finite-time imple- 
mentation, we therefore have to make a choice with 
respect to each of the following parameters: 

* the length of the Markov chains, 
* the initial value of the control parameter, 
* the decrement rule of the control parameter, 
* the final value of the control parameter. 

Such a choice is usually referred to as a cooling sched- 
ule or an annealing schedule. The results in this paper 
have been obtained by an implementation of simu- 
lated annealing that employs the cooling schedule 
derived by Aarts and Van Laarhoven (1985a, b). This 
is a three-parameter schedule: The parameters Xo and 
E. determine the initial and final values of the control 
parameter, respectively, whereas the decrement rule 
depends on a parameter 6 in the following way: 

Ck+ I = ~Ck (5 
1 + [Ck * ln(1 + 6)/3ck] (15) 

where ck is the value of the control parameter for the 
kth Markov chain and Sk is the standard deviation of 
the cost values of the configurations obtained by gen- 
erating the kth Markov chain. 
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The decrement of Ck is such that the stationary 
distributions of two succeeding Markov chains 
approximately satisfy (Aarts and Van Laarhoven 
1985a) 

I < qi(ck) < + 
1+ <qi(ck+1) 

k 1,2,... foralliEM. (16) 

Thus, for small values of 6, the stationary distributions 
of succeeding Markov chains are "close" to each other 
and we therefore argue that, after decreasing Ck to Ck+l, 

a small number of transitions suffices to let the prob- 
ability distribution of the configurations approach the 
new stationary distribution q(ck+ 1). Note that small 
values of 6 correspond to a slow decrement of the 
control parameter. 

Finally, we choose the length of each Markov chain, 
Lk, equal to the size of the largest neighborhood, i.e., 

Lk =max I X(i)I, k= 1, 2, . . . . (17) 
iE R 

We have applied simulated annealing based on this 
cooling schedule to many problems in combinatorial 
optimization (see, for example, Van Laarhoven and 
Aarts) and have found it extremely robust in that the 
final results are typically within 2% of the global 
minimum, when 6 is chosen sufficiently low (0.1 or 
smaller). 

Under some mild assumptions, it is possible to show 
that the aforementioned cooling schedule leads to a 
time-complexity of the simulated annealing algorithm 
given by &(,rL in I M I), where r is the time involved 
in the generation and (possible) acceptance of a tran- 
sition and L is the size of the largest neighborhood 
(the length of the Markov chains) (Aaarts and Van 
Laarhoven 1985a). If one works out this bound for a 
particular combinatorial optimization problem, it is 
usually polynomial in the size of the problem. In those 
cases, we have a polynomial-time approximation algo- 
rithm. Such a result with respect to the efficiency of 
the algorithm is only worthwhile in combination with 
results on its effectiveness, viz. on the difference in 
cost between solutions returned by the algorithm and 
globally minimal ones. From a theoretical point of 
view, very little is known about the effectiveness of 
simulated annealing, but there are many empirical 
results; see for instance the extensive computational 
experiments of Johnson et al. (1989). For the job shop 
scheduling problem, we present an empirical analysis 
of the effectiveness and efficiency of simulated anneal- 
ing in Section 4, but first the application of simulated 

annealing to the job shop scheduling problem is dis- 
cussed in more detail. 

3. SIMULATED ANNEALING AND JOB SHOP 
SCHEDULING 

We recall from the previous section that in order to 
apply simulated annealing to any combinatorial opti- 
mization problem, we need a precise definition of 
configurations, a cost function and a neighborhood 
structure. Furthermore, to prove asymptotic conver- 
gence we must show that the neighborhood structure 
is such that for an arbitrary configuration i there exists 
at least one globally minimal configuration io E Ropt 

that can be reached from i in a finite number of 
transitions. Hereinafter, we discuss these items in 
more detail. 

3.1. Configurations 

We recall from Section 1 that we can solve the job 
shop scheduling problem by considering sets of 
machine permutations and by determining, for such 
a set of permutations, the longest path in the digraph 
which results from giving the edges in the disjunctive 
graph the orientations determined by the permuta- 
tions. We therefore define a configuration i of the 
problem as a set Hli = [7ri, ..., 7rim}I of machine 
permutations. lrik is to be interpreted as the order in 
which the operations on machine k are processed: If 
Mv = k for some v E &, then lrik(v) denotes the 
operation following v on machine k. Consequently, 
the number of configurations is given by Hlkm IMk!, 

where Mk is the number of operations to be processed 
by machine k(mk =I{v E &a Mv = k 1). 

3.2. Cost Function 

For each configuration i we define the following two 
digraphs: 

Di = (V, A U Ei), where 

Ei= {(v, w) I {v, w) E E and rik(v) = w 

for some k E X1. (18) 

D,= (V, A U Ei), where 

i= {(v, w) I {v, w) E E and Xrik(v) = w 

for some k EX,/I 1<l mk - l}. (19) 

In other words, Di is the digraph obtained from the 
disjunctive graph by giving the edges in E the orien- 
tations resulting from Hli; the digraph Di can be 
obtained from D, by taking only those arcs from E, 
that connect successive operations on the same 



118 / VAN LAARHOVEN, AARTS AND LENSTRA 

machine. It is well known that the longest paths in Di 
and Di have equal length. Thus, the cost of a config- 
uration i can be found by determining the length of 
a longest path from 0 to N + 1 in Di. To compute 
such a cost, we use a simple labeling algorithm, 
based on Bellman's equations (Bellman 1958), for 
solving the longest-path problem in a digraph. The 
time-complexity of this algorithm is proportional to 
the number of arcs in the graph. In our case, this 
number equals IA I + I Eij = (N + n) + (N - m); 
accordingly, the labeling algorithm takes 6(N) time 
to compute the cost of a configuration. 

3.3. Neighborhood Structure 
A transition is generated by choosing vertices v and 
w, such that: 

1. v and w are successive operations on some machine 
k; 

2. (v, w) E E, is a critical arc, i.e., (v, w) is on a 
longest path in Di; 

and reversing the order in which v and w are processed 
on machine k. Thus, in the digraph Di such a transi- 
tion results in reversing the arc connecting v and w 
and replacing the arcs (u, v) and (w, x) by (u, w) and 
(v, x), respectively, where u = 1ri1(v) and x = krik(W). 
Our choice is motivated by two facts: 

* Reversing a critical arc in a diagraph Di can never 
lead to a cyclic diagraph Dj (see Lemma 2). 

* If the reversal of a noncritical arc in Di leads to an 
acyclic graph Dj, a longest path q in Dj cannot be 
shorter than a longest path p in Di (because Dj still 
contains the path p). 

Thus, we exclude beforehand some noncost- 
decreasing transitions and, in addition, all transitions 
that might result in a cyclic digraph. Consequently, 
the neighborhood structure is such that the algo- 
rithm visits only digraphs corresponding to feasible 
solutions. 

The neighborhood of a configuration i is thus given 
by the set of acyclic diagraphs that can be obtained by 
reversing a critical arc belonging to Ej in the graph Di. 
Consequently, I X(i) I < k=1 (Mk - 1) = N- m- 

3.4. Asymptotic Convergence 
It is not difficult to construct a problem instance 
containing pairs of configurations (i, j) for which there 
is no finite sequence of transitions leading from i to j 
(Van Laarhoven). Thus, to prove asymptotic conver- 
gence, we must show that for each configuration i 
there is a finite sequence of transitions leading from i 

to some globally minimal configuration. In order to 
do so, we need two lemmas. 

Lemma 1. Consider an arbitrary configuration i and 
an arbitrary global minimum io E Mopt. If i 4 Mopt, 

then the set Ki(io) defined by 

Ki(io) = {e = (v, w) E Es I e 

is critical A (w, v) E E11 (20) 

is not empty. 

Proof. The proof consists of two parts: First, we show 
that Ei always contains critical arcs, unless i E Mop,; 
next that there are always critical arcs in Ei that do 
not belong to EiO unless again i E8 opt. 

1. Suppose that Ei contains no critical arcs, then all 
critical arcs belong to A. Consequently, a longest 
path consists of arcs connecting vertices corre- 
sponding to operations of the same job; accord- 
ingly, its length is given by the total processing time 
of that job. But this is a lower bound to the length 
of a longest path in any digraph Da, hence i E Mpt. 

2. Suppose that for all critical arcs e in Ei, we have 
e E EiP. We then know that any longest path p in 
Di is also a path q in Di,. The length of a longest 
path r in DBo is also the length of a longest path in 
Dio and because io E Ropt, we have length(r) < 
length(p). But by definition length(r) > length 
(q) = length(p). Consequently, length(p) = 

length(r) and i E Ropt. 

Lemma 2. Suppose that e = (v, w) E Ei is a critical 
arc of an acyclic digraph Di. Let Dj be the digraph 
obtainedfrom Di by reversing the arc e in Ei. Then Dj 
is also acyclic. 

Proof. Suppose that Dj is cyclic. Because Di is acyclic, 
the arc (w, v) is part of the cycle in D>. Consequently, 
there is a path (v, x, y, . . ., w) in D>. But this path 
can also be found in Di and is clearly a longer path 
from v to w than the arc (v, w). This contradicts the 
assumption that (v, w) is on a longest path in Di. 
Hence, Dj is acyclic. 

Given a configuration io E Mopt, we define two sets 
for an arbitrary configuration i: 

Mi(io) = {e = (v, w) E Ei l(w, v) EG io} (21) 

Mi(io) = {e = (v, w) E Ei I (w, v) e EioJI (22) 

In view of Section 2, the following theorem now 
ensures asymptotic convergence in probability to a 
globally minimal configuration. 
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Theorem 1. For each configuration i ( 4opt it is 
possible to construct a finite sequence of transitions 
leading from i to a globally minimal configuration. 

Proof. We choose an arbitrary configuration io E Mopt 
and construct a sequence of configurations Xo, 
XI, . . .} as follows: 

1. X0=i. 
2. Xk+ I is obtained from Xk by reversing an arc 

e E K xk(o) in EXk. According to Lemma 2, this can 
be done without creating a cycle in Dxk+,. Further- 
more, this operation is of the aforementioned type 
of transition. 

It is easy to see that if I J1k(io) I > 0 then 

|MI.k+l(iO)I = | Ik(iO) I - 1. (23) 

Hence, for k = I M1(io) l, I Mxk(io) I = 0. Using 
Ki(io) 5 Mi(io) C M1(io), we find KXk(io) = 0 for k = 

i Mi(io) 1. According to Lemma 1, this implies 
Xk E Ropt* 

4. COMPUTATIONAL RESULTS 

We have analyzed the finite-time behavior of the 
simulated annealing algorithm empirically by running 
the algorithm on a number of instances of the job 
shop scheduling problem, varying in size from six jobs 
on six machines to thirty jobs on ten machines. For 
all instances, the number of operations of each job 
equals the number of machines and each job has 
precisely one operation on each machine. In that case, 
the number of configurations of each instance is given 
by (n!)m, the labeling algorithm takes 6(nm) time to 
compute the cost of a configuration, and the size of 
the neighborhood of a configuration is bounded by 
m(n- 1). 

FIS1, FIS2 and FIS3 (Table I) are three problem 
instances due to Fisher and Thompson (1963), the 
forty instances in Table II are due to Lawrence ( 1984). 
FIS2 is a notorious 10-job, 10-machine instance that 
has defied solution to optimality for more than twenty 
years. A couple of years ago, a solution with cost 930 
was found after 1 hour 47 minutes of running time, 
and no improvement was found after 9 hours 6 min- 
utes (Lageweg 1984). This cost value was only recently 
proved to be globally minimal by Carlier and Pinson 
(1989). For FIS1, FIS2 and FIS3, the processing times 
of the operations are randomly drawn and range from 
1 to 10 (FIS1) or to 99 (FIS2 and FIS3) units of time. 
The sequence of machines for each job is such that 
lower-numbered machines tend to be used for earlier 

operations. For the Lawrence instances, processing 
times are drawn from a uniform distribution on the 
interval [5, 99]; the sequence of machines for each job 
is random. 

The performance of simulated annealing on 
these instances is reported in Table I for the Fisher- 
Thompson instances, and in Table II for the 
Lawrence instances. The averages in these tables are 
computed from five solutions, obtained by running 
the algorithm, controlled by the cooling schedule 
described in Section 2, five times on each instance 
and recording the best configuration encountered dur- 
ing each run (this need not necessarily be the final 
configuration). The probabilistic nature of the algo- 
rithm makes it necessary to carry out multiple runs 
on the same problem instance in order to get mean- 
ingful results. 

All results are obtained with the parameters Xo and 
e, set to 0.95 and 10-6, respectively, and for different 
values of the distance parameter 8. Running times are 
CPU times on a VAX-785. 

From Tables I and II we can make the following 
observations: 

1. The quality of the average best solution returned 
by the algorithm improves considerably when 8 is 
decreased. This is in accordance with the theory 
underlying the employed cooling schedule: smaller 
values of 8 correspond to a better approxima- 
tion of the asymptotic behavior (Aarts and Van 
Laarhoven 1 985a). Furthermore, the difference 
between the average best solution and a globally 
minimal one does not deteriorate significantly with 
increasing problem size. For the FIS2 instance, the 
five best solutions obtained with 8 = 10-' have cost 
values of 930 (twice), 934, 935, and 938, respec- 
tively. Thus, a globally minimal solution is found 
2 out of 5 times, which is quite a remarkable result, 
considering the notoriety of this instance. 

2. As for running times, the bound for the running 
time given in Section 2 is ((nm)3 In n) (L = 
6(nm), I I I = 6((n!)m) andr = 6(nm)). Thus, for 
fixed m the bound is &(n3 In n), and for fixed n it 
is (m'3). For the A, B and C instances in Table II, 
for which m is constant, the average running time 
T for 8 = 0.01 is approximately given by t = 
to * n2215 In n, for some constant to (X2 = 1.00); 
for the G, B and I instances, for which n is constant, 
the average running time for 8 = 0.01 is approxi- 
mately given by T = t r m2.406, for some constant 
t1 (x 2 = 1.00). Thus, the observed running times 
are in good accordance with the bound given in 
Section 2. 
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Table I 
Results for Problem Instances of Fisher and Thompson (1963)" 

Simulated Annealing ABZ MSS 

Problem 6 C tC % T at Cbt CA t4A CM tM 

6 machines, 6 jobs 
FISi 10'1 56.0 1.3 1.82 8 1 55* 55* 1 - 

10-2 55.0* 0.0 0.00 52 8 55* 

10 machines, 10 jobs 
FIS2 10-1 1,039.6 15.1 11.78 113 13 1,028 930* 426 946 494 

10-2 985.8 22.1 6.00 779 61 951 
10-3 942.4 4.5 1.33 5,945 180 937 
10-4 933.4 3.1 0.37 57,772 2,364 930* 

20 machines, 5 jobs 
FIS3 10-1 1,354.2 26.5 16.24 123 13 1,325 1,178 40 

10-2 1,229.0 33.6 5.49 848 93 1,184 
10-3 1,187.0 18.7 1.89 6,840 389 1,173 

104 1,173.8 5.2 0.76 62,759 7,805 1,165* 

Iterative Improvement 

#C UrC % t a-t Gaist 

FISi 803.2 55.4 0.8 0.73 52 0 55* 
FIS2 9,441.2 1,018.2 9.1 9.48 5,945 0 1,006 
FIS3 5,221.0 1,331.4 9.5 14.28 6,841 0 1,319 

a Simulated annealing: tion over five macroruns; 
6 : the distance parameter (smaller 1-values imply slower t, oS the average running time and standard deviation over 

cooling); five macroruns (in seconds); 
C, uc: the average cost and standard deviation of best solu- Cbes, the best cost found over five macroruns; 

tion over five runs; S the percentage of C over optimal cost. 
t, o? the average running time and standard deviation over Adams, Balas and Zawack (1988): 

five runs (in seconds); CA : the best cost found; 
Cbes, : the best cost found over five runs; tA running time (in seconds). 
So : the percentage of C over optimal cost. Matsuo, Suh and Sullivan (1988): 

Iterative improvement: CM the best cost found; 
: the average number of local minima over five macro- tM running time (in seconds); 

runs (see text); * provably optimal cost. 
C, rc: the average cost and standard deviation of best solu- 

In the remainder of this section we compare the 
results obtained with our method with results obtained 
with three other methods, viz. 

* time-equivalent iterative improvement, 
* the shifting bottleneck procedure (Adams, Balas and 

Zawack), and 
* controlled search simulated annealing (Matsuo, Suh 

and Sullivan). 

4.1. Time-Equivalent Iterative Improvement 

Table I also contains results obtained by repeated 
execution of a time-equivalent iterative improvement 
algorithm based on the same neighborhood structure 
as our simulated annealing algorithm. It is based on 
repeated execution of iterative improvement. The 
averages for the time-equivalent iterative improve- 

ment are obtained from five macroruns. Each macro- 
run consists of repeated execution of the iterative 
improvement algorithm for a large number of ran- 
domly generated initial configurations and thus yields 
a large number of local minima. Execution of each 
macrorun is terminated as soon as the running time 
is equal to the running time of an average run of 
simulated annealing applied to the same problem 
instance with the distance parameter 6 set to i0-' 
(10-2 for FIS1); C is the average of the best cost value 
found during each macrorun. 

We observe that repeated execution of iterative 
improvement is easily outperformed by simulated 
annealing for the two larger problems. The difference 
is significant: for FIS3, for instance, the average best 
solution obtained by simulated annealing is almost 
1 1% better in cost than the one obtained by repeated 
execution of iterative improvement. 
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Table II 
Results for Problem Instances of Lawrence (1984)a 

Simulated Annealing ABZ MSS 

Problem 6 CYc t St Ctst CA tA CM tM 

10 machines, 10 jobs 
Al 1.0 1023.4 30.6 26 1.5 991 978 120 959 78 

0.1 981.0 17.3 110 17.1 956 
0.01 966.2 10.1 686 83.3 956 

A2 1.0 861.0 41.2 23 3.7 797 787 96 784 47 
0.1 792.4 6.2 112 7.0 784 
0.01 787.8 1.6 720 109.0 785 

A3 1.0 902.6 30.9 23 1.6 870 859 112 848 53 
0.1 872.2 12.4 112 22.1 861 
0.01 861.2 0.4 673 69.0 861 

A4 1.0 950.0 54.5 24 5.3 904 860 120 842 58 
0.1 881.4 6.9 97 20.4 874 
0.01 853.4 4.6 830 85.4 848 

A5 1.0 1021.6 26.2 30 1.9 994 914 144 907 50 
0.1 927.6 18.9 86 7.9 907 
0.01 908.4 4.2 667 126.9 902 

10 machines, 15 jobs 
BI 1.0 1176.2 37.8 69 6.7 1133 1084 181 1071 103 

0.1 1115.2 23.9 299 50.9 1085 
0.01 1067.6 3.7 1991 341.1 1063 

B2 1.0 1125.6 35.6 65 3.6 1094 944 210 927 92 
0.1 977.4 19.5 307 36.5 963 
0.01 944.2 4.7 2163 154.6 938 

B3 1.0 1155.8 64.2 63 5.6 1056 1032* 113 1032* 10 
0.1 1051.0 24.6 275 35.8 1032* 
0.01 1032.0* 0.0 2093 89.7 1032* 

B4 1.0 1101.0 53.5 71 5.0 1032 976 217 973 100 
0.1 977.6 8.1 252 28.5 968 
0.01 966.6 8.7 2098 406.0 952 

B5 1.0 1114.6 9.1 77 16.9 1103 1017 215 991 90 
0.1 1035.4 10.6 283 44.3 1017 
0.01 1004.4 14.4 2133 374.5 992 

10 machines, 20 jobs 
Cl 1.0 1397.0 69.1 139 16.0 1311 1224 372 1218* 27 

0.1 1268.0 9.7 555 81.7 1252 
0.01 1219.0 2.0 4342 597.8 1218* 

C2 1.0 1434.2 40.0 139 6.4 1390 1291 419 1274 143 
0.1 1311.6 12.7 651 82.9 1295 
0.01 1273.6 5.2 4535 392.0 1269 

C3 1.0 1414.6 57.8 135 7.4 1335 1250 451 1216 153 
0.1 1280.2 23.6 614 83.3 1246 
0.01 1244.8 15.4 4354 349.8 1224 

C4 1.0 1387.4 47.0 138 14.1 1307 1239 446 1196 134 
0.1 1260.4 35.4 581 24.0 1203 
0.01 1226.4 6.5 4408 450.9 1218 

C5 1.0 1539.2 44.2 145 20.6 1492 1355* 276 1355* 4 
0.1 1393.6 9.6 605 84.4 1381 
0.01 1355.0* 0.0 3956 428.2 1355* 



122 / VAN LAARHOVEN, AARTS AND LENSTRA 

Table IT-Continued 
Results for Problem Instances of Lawrence (1984) 

Simulated Annealing ABZ MSS 

Problem 6 C c t t Cst CA tA CM tM 

1O machines, 30 jobs 
Dl 1.0 1882.2 39.3 442 79.3 1821 1784* 19 - - 

0.1 1784.0* 0.0 1517 58.1 1784* 

D2 1.0 1921.4 35.3 492 66.2 1868 1850* 15 - - 

0.1 1850.0* 0.0 1752 124.6 1850* 

D3 1.0 1761.8 12.2 433 40.4 1740 1719* 14 - - 

0.1 1726.6 15.2 1880 130.8 1719* 

D4 1.0 1816.4 27.7 470 31.2 1788 1721* 11 - - 

0.1 1775.6 38.4 1886 232.4 1721* 

D5 1.0 2011.2 81.3 434 34.6 1888* 1888* 11 - - 

0.1 1890.0 4.0 1668 107.9 1888* 

5 machines, 10 jobs 
Fl 1.0 707.0 32.2 6 1.0 666* 666* 1 - - 

0.1 666.0* 0.0 20 3.5 666* 
0.01 666.0* 0.0 123 15.3 666* 

F2 1.0 719.0 20.0 6 1.0 685 669 6 655* 2 
0.1 671.0 11.1 24 2.5 655* 
0.01 663.0 4.9 117 19.0 655* 

F3 1.0 689.6 22.4 5 0.9 664 605 32 597 17 
0.1 635.6 9.5 24 3.8 626 
0.01 617.6 8.5 129 12.6 606 

F4 1.0 665.4 56.9 6 0.9 608 593 23 590 17 
0.1 617.2 20.5 21 5.2 594 
0.01 593.8 2.1 121 15.9 590 

F5 1.0 594.4 2.8 5 0.6 593* 593* 0 - - 

0.1 593.0* 0.0 19 4.2 593* 
0.01 593.0* 0.0 118 15.3 593* 

5 machines, 15 jobs 
GI 1.0 937.2 13.7 16 2.8 926* 926* 1 - - 

0.1 926.0* 0.0 52 5.8 926* 
0.01 926.0* 0.0 286 32.1 926* 

G2 1.0 948.6 44.1 15 1.6 911 890* 1 - - 

0.1 900.6 8.5 66 15.2 890* 
0.01 890.0* 0.0 376 48.3 890* 

G3 1.0 905.8 34.2 16 0.4 863* 863* 2 863* 1 
0.1 863.0* 0.0 55 7.3 863* 
0.01 863.0* 0.0 292 40.8 863* 

G4 1.0 965.2 20.0 13 1.0 951* 951* 0 - - 

0.1 951.0* 0.0 47 5.9 951* 
0.01 951.0* 0.0 283 25.9 951* 

G5 1.0 958.0* 0.0 14 1.6 958* 958* 0 - - 

0.1 958.0* 0.0 45 2.0 958* 
0.01 958.0* 0.0 243 42.3 958* 
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Table II-Continued 
Results for Problem Instances of Lawrence (1984)a 

Simulated Annealing ABZ MSS 

Problem 6C ?c t C! Cbt CA tA CM tM 

5 machines, 20 jobs 
H I 1.0 1229.6 14.7 32 3.9 1222* 1222* 1 - - 

0.1 1222.0* 0.0 108 17.2 1222* 
0.01 1222.0* 0.0 627 18.4 1222* 

H2 1.0 1042.8 7.6 34 3.9 1039* 1039* 0 - - 

0.1 1061.2 44.4 116 11.9 1039* 
0.01 1039.0* 0.0 655 30.7 1039* 

H3 1.0 1154.6 9.2 32 2.5 1150* 1150* 1 - - 

0.1 1150.0* 0.0 118 18.0 1150* 
0.01 1150.0* 0.0 564 85.9 1150* 

H4 1.0 1292.0* 0.0 27 1.7 1292* 1292* 0 - - 

0.1 1292.0* 0.0 93 20.6 1292* 
0.01 1292.0* 0.0 462 21.8 1292* 

H5 1.0 1299.8 77.4 34 5.3 1207* 1207* 2 - - 

0.1 1252.5 18.8 126 16.2 1233 
0.01 1207.0* 0.0 736 26.3 1207* 

15 machines, 15 jobs 
I I 1.0 1487.6 40.4 152 6.4 1450 1305 268 1292 312 

0.1 1343.2 30.2 785 80.6 1297 
0.01 1300.0 7.8 5346 399.8 1293 

I2 1.0 1580.2 38.3 173 12.1 1523 1423 419 1435 289 
0.1 1479.4 28.8 757 94.6 1457 
0.01 1442.4 5.7 5287 688.5 1433 

I3 1.0 1422.2 28.3 173 25.3 1376 1255 540 1231 336 
0.1 1303.4 30.5 713 90.8 1263 
0.01 1227.2 8.2 5480 614.8 1215 

I4 1.0 1408.6 44.4 186 24.6 1348 1273 335 1251 330 
0.1 1305.4 27.5 673 75.1 1264 
0.01 1258.2 5.2 5766 800.3 1248 

I5 1.0 1399.8 60.2 162 8.8 1318 1269 450 1235 308 
0.1 1282.2 15.5 745 68.4 1254 
0.01 1247.4 9.9 5373 1066.4 1234 

a The legend for this table appears on the bottom of Table I. 

4.2. The Shifting Bottleneck Procedure 

Tables I and II also contain for each instance the cost 
value of the best solution obtained by Adams, Balas 
and Zawack with their shifting bottleneck procedure. 
Most values are obtained by a second heuristic, which 
embeds the aforementioned sliding bottleneck proce- 
dure and proceeds by partial enumeration of the solu- 
tion space. The values for the instances F1, F5, G3 as 
well as for the D and H instances are obtained by the 
sliding bottleneck procedure only. The corresponding 
running times are obtained by halving the running 
times in Adams, Balas and Zawack, since these cor- 
respond to a VAX-780. Adams, Balas and Zawack 
show their approach to be superior to a number of 

approaches based on priority dispatching rules: The 
typical improvement is reported to be between 4% 
and 10%. 

Comparison of simulated annealing and the 
shifting bottleneck procedure leads to the following 
observations: 

1. For those instances for which Adams, Balas and 
Zawack do not find a globally minimal solution 
(mainly the A, B, C and I instances in Table II), 
the running times of simulated annealing with 
a = 0.1 and of the heuristic of Adams, Balas 
and Zawack are of the same order of magnitude. In 
this case, the best solution found by Adams, Balas 
and Zawack is considerably better than the average 
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best solution returned by simulated annealing and 
as good as the best solution found in five runs of 
simulated annealing. 

Putting 6 = 0.01 makes simulated annealing 
much slower than the heuristic of Adams, Balas 
and Zawack, but now their best solution is slightly 
worse than the average best solution of simulated 
annealing and considerably worse than the best 
solution in five runs of simulated annealing (the 
typical improvement is between 1 and 3%). 

2. For the instances for which the heuristic of Adams, 
Balas and Zawack finds a globally minimal solu- 
tion, it outperforms simulated annealing: The latter 
algorithm also finds global minima, but takes much 
more time to do so. 

Admittedly, the performance of the shifting bottleneck 
heuristic is liable to improve if it is allowed more time. 
Nevertheless, the results in Tables I and II indicate 
that simulated annealing is a promising approach to 
job shop scheduling, as well as a robust one (cf. the 
small difference between C and Cbest in Tables I and 
II for 6 = 0.01) and certainly superior to traditional 
approaches, such as procedures based on priority dis- 
patching rules. 

4.3. Controlled Search Simulated Annealing 

Finally, Tables I and II contain for a number of 
instances the cost value of the best solution obtained 
by Matsuo, Suh and Sullivan with their controlled 
search simulated annealing method. They use neigh- 
borhoods consisting of schedules that can be obtained 
by several types of (multi)adjacency interchanges 
of operations that are critical for determining the 
makespan. Briefly, these neighborhoods are obtained 
by augmenting the relatively simple neighborhoods 
used in our approach by adding better schedules that 
are found by exploring the structure of the problem 
at hand. Evidently, this makes the approach less gen- 
eral than ours. As the tables show, this augmentation 
enhances the efficiency of the algorithm but not its 
effectiveness; the quality of the final solution remains 
roughly the same. 

The running times for this approach, given in 
Tables I and II, are again obtained by halving the 
times given by Matsuo, Suh and Sullivan, since they 
also used a VAX-780 computer. Comparison of our 
simulated annealing method with controlled search 
simulated annealing yields the following conclusions. 

1. For those instances for which Matsuo, Suh and 
Sullivan do not find an optimum, our approach 
finds, on the average, solutions of the same quality 
but at the cost of larger computational efforts. 

2. For those instances for which an optimum was 
found, the controlled search simulated annealing 
method finds it in remarkably smaller running 
times, even when compared to the running times 
used by the shifting bottleneck procedure. 

5. CONCLUSION 

We have discussed a new approach to job shop sched- 
uling based on a randomized version of iterative 
improvement. The probabilistic element of the algo- 
rithm (the acceptance of cost-increasing transitions 
with a nonzero probability) makes simulated anneal- 
ing a significantly better approach than the classical 
iterative improvement approach on which it is based. 
The difference is especially pronounced for large prob- 
lem instances. 

For a number of well-studied problems in combi- 
natorial optimization a comparison of simulated 
annealing and tailored heuristics usually leads to the 
conclusion that tailored algorithms are more efficient 
and more effective than simulated annealing: They 
find better solutions in less time (see, for example, 
Van Laarhoven and Aarts, and Johnson et al.). Inter- 
estingly, this does not seem to be entirely the case for 
job shop scheduling: Simulated annealing has a poten- 
tial of finding shorter makespans than the tailored 
heuristic of Adams, Balas and Zawack, at the cost of 
large running times. In other words, tailoring the 
algorithm toward the combinatorial structure of the 
problem does not yield a more effective, merely a 
more efficient algorithm. This observation is con- 
firmed by the results of Matsuo, Suh and Sullivan, 
who describe a simulated annealing-based approach 
to job shop scheduling, employing a more problem 
specific neighborhood structure. Their approach also 
leads to a more efficient algorithm, but it again pro- 
duces results of the same quality. 

We consider the disadvantage of large running times 
to be compensated for by the simplicity of the algo- 
rithm, by its ease of implementation, by the fact that 
it requires no deep insight into the combinatorial 
structure of the problem, and, of course, by the high 
quality of the solutions it returns. 
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