Simulated Annealing Algorithms:
An Overview

Rob A. Rutenbar

Introduction

Simulated annealing is a technique for combinatorial op-
timization problems, such as minimizing functions of very
many variables. Because many real-world design problems
can be cast in the form of such optimization problems, there
is intense interest in general techniques for their solution.
Simulated annealing is one such technique of rather recent
vintage (it was introduced in 1982 by Kirkpatrick et al. [1])
with an unusual pedigree: it is motivated by an analogy to
the statistical mechanics of annealing in solids. To under-
stand why such a physics problem is of interest, consider
how to coerce a solid into a low energy state. A low energy
state usually means a highly ordered state, such as a crystal
lattice; a relevant example here is the need to grow silicon
in the form of highly ordered, defect-free crystals for use
in semiconductor manufacturing. To accomplish this, the
material is annenled: heated to a temperature that permits
many atomic rearrangements, then cooled carefully, slowly,
until the material freezes into a good crystal. Simulated
annealing techniques use an analogous set of ““controlled
cooling” operations for nonphysical optimization prob-
lems, in effect transforming a poor, unordered solution into
a highly optimized, desirable solution. Thus, simulated an-
nealing offers an appealing physical analogy for the solu-
tion of optimization problems, and more importantly, the
potential to reshape mathematical insights from the domain
of physics into insights for real optimization problems.

Interest in such solution techniques is intense because
few important combinatorial optimization problems can be
solved exactly in a reasonable time. Many optimization
problems arising in practice are NP-complete [2]: all known
techniques for obtaining an exact solution require an ex-
ponentially increasing number of steps as the problems be-
come larger. Hence, emphasis has been directed toward
heuristic techniques for solving these important problems.
The difference between a heuristic and an algorithm is that
a heuristic is not guaranteed to get the optimum answer;
heuristics are designed to give an acceptable answer for
typical problems in a reasonable time. In practice, however,
the terms algorithm and heuristic are often used interchange-
ably. Moreover, simulated annealing is not an algorithm in
the sense that it prescribes a mechanical sequence of com-
putations to solve a specific problem, e.g., in the sense that
Gaussian elimination is an algorithm for matrix inversion.
Rather, annealing is a strategy or style for solving combi-
natorial optimization problems. Specifically, simulated an-
nealing is a heuristic solution strategy applicable to a wide
variety of optimization problems. Nevertheless, we will still
speak of “annealing algorithms,” knowing that this simply
means a solution technique implemented in the style of
annealing.

Since its introduction, annealing has diffused rapidly into

JANUARY 1989

many application areas. It is impossible to survey all of
them here. What we seek to provide is a brief overview of
simulated annealing ideas and applications in the area of
integrated circuit (IC) design and to survey some current
research problems and current perspectives on the tech-
nique. We will begin this article with a brief introduction
to the actual mechanics of simulated annealing and employ
a simple example from an IC layout to illustrate how these
ideas may be applied. Next, we will illustrate the complex-
ities and trade-offs involved in attacking a realistically com-
plex design problem by dissecting two very different
annealing algorithms for VLSI chip floorplanning. We will
then briefly survey several current research problems aimed
at telling us more precisely how and why annealing algo-
rithms work. With this technical background, we will then
discuss some philosophical issues raised by the introduc-
tion of annealing. It is certainly unusual for an optimization
technique to arouse the passions of engineers and algo-
rithm designers, but remarkably enough, such has been the
case with annealing. These flames continue to burn, al-
though, now, less brightly, fanned originally by some re-
markable (and, unfortunately, unattainable) expectations
surrounding the introduction of the technique. We survey
these issues and offer some opinions here. Finally, we pres-
ent some concluding remarks.

Basic Mechanics and a Simple Example

For our purposes, a combinatorial optimization problem is
one in which we seek to find some configuration of param-
eters X = (X,, X,, . . ., X.) that minimizes some function
f(X). This function is usually referred to as the cost or ob-
jective function; it is a measure of goodness of a particular
configuration of parameters. Realistic design problems may
require many parameters and a complex cost function.
Consider, for example, deciding the placement of compo-
nents on the surface of an IC in an optimal way. We may
seek to maximize the ability to route wires to interconnect
these components, minimize the overall chip area, maxi-
mize the manufacturing yield of the chip, minimize the
deviation from specified timing constraints, and so forth.
The cost function may be very sophisticated, and the num-
ber of parameters large: perhaps 10° to 10° variables to spec-

-ify positions for each component.

Heuristic strategies for solving such problems come in
several styles. Sometimes constructive heuristics can be found,
which build up a good answer directly, piece by piece. Of
more interest to us are iterative improvement strategies, which
attempt to perturb some existing, suboptimal solution in
the direction of a better, lower-cost solution. The idea can
be neatly illustrated with a “balls and hills” diagram, as
shown in Fig. 1. We regard all the values of f(X), taken over

8755-3996/89/0100-0019%1.00 T 1989 IEEE 19



all legal configurations (the configuration space) of the N pa-
rameters X, as defining a cost surface. In the figure, we
plot this schematically for N = 1, i.e., a single parameter,
as a set of hills and valleys in the cost surface. The ball
represents the current configuration we plan to perturb. In
practice, iterative improvement algorithms often start with
a random initial configuration, or, when possible, with a
heuristically constructed initial configuration that is not as
costly as a random solution.

To find a good solution, we try to perturb the known
solution to improve it. From the diagram, an obvious ap-
proach is to explore easily reached neighboring configura-
tions and to select the one with least cost, i.e., the one
giving the most improvement. In practice, we attempt some
small random perturbation to the configuration that yields
a nearby solution. This process can continue starting from
the new configuration until no further improvements are
obtained, at which point the process terminates. This strat-
egy seems reasonable, but it has a serious problem: it is
easily trapped in local minima, solutions that look good in
some small neighborhood of the cost surface but are not
necessarily the global optimum. Standard iterative im-
provement is a downhill-only style; in Fig. 1, each new per-
turbation moves to a configuration downhill from the previous
one, thus becoming trapped in local minima. In practice,
one scheme to overcome this is simply to try many random
initial configurations, improve each, and use the best an-
swer found. However, for very large problems, the com-
putational expense is great here, the number of random
starts needed to adequately sample the cost surface is un-
reasonable, and we still have no guarantees of finding a
good answer.

Simulated annealing offers a strategy very similar to it-
erative improvement, with one major difference: annealing
allows perturbations to move uphill in a controlled fashion.
We now refer to individual perturbations as moves. Because
each move can now transform one configuration into a worse
configuration, it is possible to jump out of local minima
and potentially fall into a more promising downhill path.
However, because the uphill moves are carefully con-
trolled, we need not worry about getting close to a good,
final solution, only to randomly jump uphill to some far
worse one.

The relevant analogy here is physical annealing of a solid.
To coerce some material into a low energy state, we heat
it, then cool it very slowly, allowing it to come to thermal
equilibrium at each temperature. Simulating this process is
(in hindsight) very similar to a combinatorial optimization
task. For this physical system, the goal is to find some
arrangement of atomic particles (a configuration) that min-
imizes the energy (cost) of the system. The basic require-
ment for simulating this process is the ability to simulate
how the system reaches thermodynamic equilibrium at each
fixed temperature in the schedule of decreasing tempera-
tures used to anneal it. Toward this end, the Metropolis
algorithm, developed in 1953 (see [1]), can be employed.
The algorithm is shown in Fig. 2.

The idea, as in iterative improvement, is to propose some
random perturbation, such as moving a particle to a new
location, then evaluate the resulting change in energy AE.
If the energy is reduced, AE<0, the new configuration has
lower energy and is accepted as the starting point for the
next move. However, if the energy is increased, AE>0, the
move may still happen: the new, higher energy configura-

20

Allowed
Downhill

— >

Configurations

Fig 1 Configuration space: balls and hills.

tion may be acceptable. In physical systems, jumps to higher
energy actually do happen, but they are moderated by the
current temperature T. At higher temperatures, the prob-
ability of large uphill moves in energy is large; at low tem-
peratures the probability is small. The Metropolis algorithm
models this with a Boltzmann distribution: the probability
of an uphill move of size AE at temperature T is
Prlaccept] =~ 2F7, In practice, this probabilistic acceptance
is achieved by generating a uniform random number R in
[0,1] and comparing it against the threshold Pr{accept]. Only
if R<Prl[accept] is the move accepted. Thus, very probable
moves can be rejected, and very improbable moves can be
accepted —at least occasionally. By successively lowering
the temperature and running this algorithm, we can sim-
ulate the material coming into equilibrium at each newly
reduced- temperature, and thus effectively simulate the
physical annealing.

We can readily apply this simulated annealing procedure
to arbitrary combinatorial optimization problems. With re-
spect to standard iterative improvement, the only addition
is the notion of a temperature parameter. In physical sys-
tems, temperature has a physical meaning; in arbitrary
nonphysical optimization tasks, the temperature is simply
a control parameter. The idea is to employ a cooling schedule,
a sequence of decreasing temperatures, to moderate the
acceptance of uphill moves over the course of the solution.

M = number of mocves to attempt;
T = current temperature;
for m=1 to M {

Generate a random move, e.g., move a particle;
Evaluate the change in energy, AE;
if(AE < 0){
~ /* downhill move: accept it */
accept this move, and update configuration;
}
else {
[* uphill move: accept maybe */
accept with probability P = ¢~AE/T;
update configuration if accepted;

}
} /* end for loop ¥/

Fig 2 Metropolis algorithm.

IEEE CIRCUITS AND DEVICES MAGAZINE



Initially, this effective temperature parameter is high enough
to permit an aggressive, essentially random search of the
configuration space. Most uphill moves are allowed. As the
temperature cools, fewer uphill moves are allowed; we tend
to improve the value of the cost function here, but some
local minima can also be avoided. At the coldest tempera-
tures, the solution is close to freezing into its final form,
and very few disruptive uphill moves are permitted. In this
temperature regime, annealing closely resembles standard
downhill-only iterative improvement.

We can illustrate these ideas concretely with a simple
example drawn from an IC layout. The task is to place
components on the surface of an IC so as to optimize sub-
sequent wirability (see Fig. 3). The IC itself is modeled as
a grid, where each grid point can hold one module. The
input circuit to be “placed” is a set of interconnected mod-
ules, in this case, each with a maximum of four electrical
terminals. This abstraction is a reasonable, though simple,
model of placing gates on a gate array chip. Each set of
module terminals to be wired together forms a net. We
must place the modules and optimize the wirability of all
the required nets.

An annealing algorithm for this task needs four basic
components:

1. Configurations: a model of what a legal placement (con-
figuration) is. These represent the possible problem so-
lutions over which we will search for a good answer.

2. Move set: a set of allowable moves that will permit us
to reach all feasible configurations and one that is easy
to compute. These moves are the computations we must
perform to move from configuration to configuration as
annealing proceeds.

3. Cost function: to measure how good any given place-
ment configuration is.

4. Cooling schedule: to anneal the problem from a random
solution to a good, frozen, placement. Specifically, we
need a starting hot temperature (or a heuristic for de-
termining a starting temperature for the current prob-
lem) and rules to determine when the current temperature
should be lowered, by how much the temperature should
be lowered, and when annealing should be terminated.

For this task, a legal configuration is just an assignment
of modules to grid locations, one module per grid site. A
simple move set can be composed solely of pairwise mod-
ule swaps. It is easy to see that any target configuration
can be reached from any starting configuration using only
pair swaps. The cost function we choose is simply the es-
timated total wirelength. This is simplistic but workable,
i.e., a real placement algorithm might include more effects
like wiring congestion. We approximate the length of each
net as one-half the perimeter of the smallest rectangle that
encloses all the modules connected to that net. This metric

Connected Logic Gates

is an optimistic lower bound on the amount of wire actually
required for each net. It has the advantage that it is easy
to compute incrementally, after any pair swap. The cooling
schedule will be the simplest possible: T,,.,, = aTy, a <
1, where the initial starting temperature and cooling rate «
are determined empirically to give good results. In partic-
ular, the starting temperature is chosen to give an accept
rate (the fraction of accepted moves at the current temper-
ature) of 0.95. At each temperature, we perform 100-M
moves, for M modules being placed. The stopping criterion
is to terminate annealing when the cost improvement seen
across three successive temperatures is sufficiently small,
e.g., less than 1 percent.

The above design decisions fully characterize this an-
nealing algorithm. However, one additional note of so-
phistication is worth including. This is the idea of range
limiting. Recall that at colder temperatures, large uphill moves
are unlikely to be accepted. Nevertheless, their evaluation
takes time, and it is worthwhile attempting to bias the gen-
eration of random moves in favor of those more likely to
be accepted and thus advance the placement toward its
final configuration. We accomplish this by empirically re-
stricting the distance between modules in a proposed pair
swap as the temperature cools. Thus, near freezing, we
simply do not attempt across-the-chip moves that are likely
to be rejected.

The algorithm described above has been implemented to
illustrate its execution on a typical problem. For a place-
ment problem with approximately 800 gates, a plot of cost
versus temperature for a typical annealing run appears in
Fig. 4. (Note that the plot is read right to left; annealing
proceeds from hot to cold temperatures.) At hot tempera-
tures, the placement is essentially randomized. As cooling
proceeds, cost begins to fall rapidly over a sequence of
temperatures. Finally, improvement levels off as we near
a good, final solution. The algorithm terminates when the
cost value is essentially “’flat enough” for a few tempera-
tures. Note that the wirelength is reduced dramatically,
from around 17,000 for the initial solution to around 2,300
at freezing.

Note also that annealing algorithms are not deterministic
and will produce different answers each time they are run,

Placement Cost versus Temperature

17000

114000

Cost 11000~

8000

5000 —

2000

0.1 1 10 100 500

Fig 3 Gate array placement model.

JANUARY 1989

Fig 4 Placement: cost versus temperature.

21



even on the same problem. This is because of the proba-
bilistic nature of choosing moves and accepting uphill moves.
In particular, there is n0 guarantee of getting precisely the
optimum answer in any annealing algorithm or even of
getting the same answer on multiple runs. This is illus-
trated for our placement problem in Fig. 5. For about 20
placement runs, the figure plots the final placement cost
attained versus the final temperature at which each run
terminated. The mean and variance for these data are also
shown. (Although some tuning of the cooling schedule may
affect the magnitude of the spread of these data, it will
never eliminate this spread entirely.) What annealing really
offers here is some probability of getting out of some local
minima; this is not the same as a guarantee of finding the
optimum. The data in Fig. 5 clearly show that some place-
ments froze earlier than others, some at a more costly local
minimum than others.

A Real Application: Chip Floorplanning

The placement algorithm presented in the previous sec-
tion is simplistic but not all that different from placement
algorithms in actual use; it just lacks some extensions to
handle nuances of real technologies. However, this sim-
plicity may be misleading, since it may suggest that the
actual design of the components of an annealing algo-
rithm —the configuration space, move set, cost function,
cooling schedule —is also simple, straightforward, and per-
haps even inevitable. The placement algorithm is a good
first example because it can be annealed simply, but it is an
inappropriate generalization here to regard all annealing
algorithms as simple. Not all applications admit annealing
solutions, and not all annealing solutions are obvious. The
purpose of this section is to make apparent the fact that
the design of annealing algorithms, like that of all good
algorithms, requires insight and judgment. We illustrate
this by comparing two very different annealing-based so-
lutions to a related IC layout task: the floorplanning prob-
lem.

The floorplanning task is also a placement task, but now
the modules to be placed on the chip may have different
shapes and can no longer be modeled as dimensionless

Placement Final Costs versus Final Temperatures
2500 —| e o
o
o +lo
o
=]
2400 ] Mean Cost
........ CD@
=
Final Cost c
o -l
2300
s B
2200 —
T T
0.2 03 04 0.5
Final Temperature

Fig 5 Placement: nondeterminism in results.

22

points. Let us regard them as arbitrary rectangular shapes
(this is itself a simplification, but a reasonable one). The
overall goal is to minimize chip size and total wirelength.

It should be apparent that many of the design decisions
for the simple placement algorithm are not workable here.
For example, we cannot assume modules will simply reside
on a fixed grid, since they now have different shapes.
Moreover, we cannot just swap pairs of modules to perturb
the placement: if a small module packed tightly among its
neighbors is swapped with a much larger module, the swap
will result in an illegal placement with the larger module
overlapping its new neighbors. The key problems are to
design configurations, moves, and cost functions cleverly
so that we ultimately arrive at a compact, realizable floor-
plan. Here are two very different solutions to these prob-
lems. One approach is similar to our own previous placement
algorithm; we refer to it as a direct solution because it has
the same flavor of rearranging the physical location of mod-
ules on the silicon surface and measuring the quality of the
result. The other approach, which we refer to as an indirect
style, builds first a graph-based, topological representation
of the floorplan and anneals this abstract representation; a
subsequent mapping process is required to turn this ab-
stract form into a real layout. Each style has its advantages
and disadvantages.

The direct style appears to have originated with Jepsen
and Gelatt of IBM [3], where it was originally formulated
for gate array macro cell placement. It was extended to
more general placement problems by Sechen and Sangio-
vanni-Vincentelli of U.C. Berkeley [4]. The essential prob-
lem is that relocating or swapping modules of varying shapes
cannot be guaranteed to produce a layout without overlaps.
The key idea to solve this is simply to allow these overlaps,
but penalize them in the overall cost function. Thus, the
move set can consist of moving modules directly, without
regard for overlap. The layout configurations thus visited
during annealing are not necessarily realizable as real chips.
Such configurations are often referred to as erroneous or
incorrect intermediate states. The idea is that by allowing such
configurations during annealing, we greatly simplify the
design of the move set. The cost function must now ac-
count for “real” objectives such as wirelength and chip
area, which should be minimized, as well as module-to-
module overlap, which must be driven to zero in the final
floorplan.

An example of a floorplan evolving during a direct-style
annealing run appears in Fig. 6. This floorplan was pro-
duced by PASHA, a floorplan tool developed by R. Jayar-
aman at Carnegie-Mellon University (CMU) as part of a
study of parallel annealing algorithms [5]. Note that, for
this run, the overall topology of the floorplan evolves first,
and overlap rather quickly evaporates. As cooling pro-
ceeds, the final packing of this topology is found.

The second, indirect, style of solution relies on the idea
of building an abstract topological representation of the
floorplan. Topological in this sense means knowing simply
which modules are above, below, left, or right of each mod-
ule in a specific floorplan. Graph structures are amenable
to this task. The key idea here is to avoid incorrect inter-
mediate states. The trick is to design the layout represen-
tation and move set so that each move applied to a legal
floorplan produces a new legal floorplan. These require-
ments are the reason the graph-based topological represen-
tation is attractive: layout modifications that appear complex
when viewed as individual module movements may re-

IEEE CIRCUITS AND DEVICES MAGAZINE



——

quire only a relatively simple modification to the abstract
graph.

To be concrete, we consider the indirect-style algorithm
of Wong and Liu of the University of Illinois [6]. This al-
gorithm relies on a widely used topological representation
for layouts called a slicing tree. An important point is that
not all legal floorplans can be represented with a slicing
tree; only those with a slicing structure can be so rep-
resented. Informally, a slicing structure is a layout that can
be arrived at by repeatedly bisecting a rectangle, as illus-
trated in Fig. 7. The constraint is that each slicing cut at-
tempted must completely bisect one of the rectangles
produced by an earlier cut. A slicing tree is a compact rep-
resentation for this class of layouts. The nodes at the bot-
tom of the tree (the leaf nodes) represent modules
themselves; the intermediate nodes represent slicing cuts.

The algorithm of Wong and Liu uses a slightly special-
ized form of slicing tree to define the configuration space
for their floorplanner. The advantage of this design choice
is that a good move set can be built around a few types of
moves that simply rearrange the tree, not the (x,y) locations
of individual modules. Recall that by moving nodes in the
tree, we change the order and location of slicing cuts, thus
changing the floorplan. An example of such a move, and
the resulting floorplans (from [6]), is illustrated in Fig. 8.
After each move, the tree can be quickly manipulated to
determine the total size of the resulting layout, the new
location of each module, and, hence, the total estimated
wirelength. Indeed, the cost function for this floorplanner

Initial Floorplan

L e O =
e _p L

inal Floorpian

includes only wirelength and area terms but no overlap
term since only legal floorplans are shown.

Each of these floorplanning algorithms required a clever,
elegant insight to construct an annealing solution, and yet
these two solution styles represent very different annealing
design choices, each with their own advantages and dis-
advantages. However, our goal is not to determine the best
style but to argue that a difficult problem may require ex-
treme cleverness to recast it in a form suitable for an an-
nealing algorithm. Annealing techniques are not a panacea
for combinatorial optimization problems: hillclimbing does
not obviate the need for careful thought in algorithm de-
sign.

Research Issues

In this section, we present a brief survey of issues at the
forefront of research on simulated annealing techniques and
their applications in IC design. Given the very recent vin-
tage of the ideas underlying this solution technique, there
remain a great many unanswered questions with both prac-
tical and theoretical importance; we merely touch on some
of these. Although the range of research in annealing is
broad, we informally partition it into three components:
applications of annealing, acceleration of annealing, and
foundations of annealing.

Research concerning applications of annealing strives to
use annealing to improve solutions to existing problems
and also to apply the technique to new, unsolved prob-
lems. As with any general combinatorial optimization tech-
nique, interest at first was intense as practitioners sought

Indicates
a Vertical
WSlice
A Indicates
B E a Horizontal
c F Slice
: I\J
D F
A
B
c E
o |
A
g IC|E
b £
ABiC| ¢
A B [ (o} D I [ E I I F

Leaves are Actual Modules

Evolving Floorplan Slicing Tree Representation
with Consecutive

Slices in Bold'

Fig 6 Evolution of direct-style floorplan in PASHA.

JANUARY 1989

Fig 7 Slicing floorplans and slicing trees.

23



Original Slicing Tree

1 Move 34 5
g Rearranges "
Shaded 2

(D Tree Nodes !

Tree 1 Move Later

1 2

Original Floorplan Floorplan 1 Move Later

Fig 8 Evolution of indirect-style slicing floorplan.

to understand for which types of problems the technique
was most well suited. Applications in IC design are too
numerous to survey here; [7] has a fairly complete survey
of this field. We do note, however, that in IC design the
dominant applications for annealing currently are layout
tasks. Interestingly enough, it turns out that these prob-
lems simply have the right character to anneal well; we shall
describe this in more detail later. A general survey of layout
problems and algorithms, including annealing-based ap-
proaches, appears in {8].

Research concerning acceleration of annealing focuses on
this central fact: annealing algorithms are often slow algo-
rithms. This is because of their iterative improvement na-
ture—many configurations need to be visited at many
temperatures to reach a good solution. Although each move
represents a small amount of computation, the need to
compute 10° to 10° moves can still consume hours or days
of CPU time. One approach to this problem is the engi-
neering approach: improve and tune the annealing algo-
rithms we have now. Better data structures, more clever
program implementations of the computations underlying
move generation and evaluation, etc., all have led to great
reductions in run time. Another approach is to concentrate
on inherently faster annealing algorithms, e.g., the indirect-
style floorplanner discussed previously tends to be faster
than the direct style, since it visits only legal floorplan con-
figurations. Another approach is to make fundamental im-
provements in our understanding of the foundations of
annealing algorithms, for example, improvements in cool-
ing schedules or in understanding what forms of cost func-
tions are more easily annealable.

This leads us naturally to the third focus of annealing
research, foundations of annealing. Broadly, this work asks
these questions: what kinds of problems can be annealed,
and for these problems, what is the optimal strategy for
annealing them? A major, open question is to characterize
the sorts of problems amenable to annealing. Not all com-
binatorial optimization problems can be annealed to give
satisfactory solutions (e.g., the time taken to get a decent

24

Fig 9 Parallel floorplan results from PASHA.

answer may prove to be unreasonable). It is widely be-
lieved that something about the basic structure of a partic-
ular configuration space—its landscape of multidimensional
hills and valleys —determines whether annealing is viable.
A simple example clarifies the problem. A configuration
space that is mostly smooth, with gradually flowing hills
and valleys, is relatively easy to anneal: once we find a
good global downhill track, we can proceed on it, climbing
over the occasional hill or bump as we approach a good
solution. In contrast, consider a mostly flat landscape with
numerous, densely packed gopher holes, each of widely
varying depth, but some of which lead to the very best
solutions. Such a problem is probably impossible to anneal,
since moves will keep falling into these dead-end holes,
and as the temperature cools, it will become impossible to
climb out of them, thus trapping the solution in a bad local
minimum. The question here is how to characterize in for-
mal, rigorous mathematical language these prosaic notions
of landscapes that are ““too irregular.” Approaches to this
problem —both for narrowly defined, specific classes of
problems or for more general problems —are the subject of
active investigation.

Another fundamental question concerns the convergence
of annealing algorithms and asks whether it is possible for-
mally to prove that an annealing algorithm will converge
to an optimal answer. It turns out that, by making certain
simplifications, annealing algorithms can be modeled prob-
abilistically (actually, as Markov chains); in fact, conver-
gence can be proven. However, these technical proofs
typically show that annealing converges asymptotically, in
probability. In other words, if we perform enough (maybe
infinitely many) moves, the probability that we have found
a global minimum can be made as close to 1 as we like.
These often misunderstood results suggest that annealing
is on a firm footing in a fundamental sense, but they do
not provide any practical guarantee of convergence in a real
problem.

A related area of research is optimal cooling schedules.
In our simple gate array placement example, we used the

IEEE CIRCUITS AND DEVICES MAGAZINE




crudest possible schedule: T,.,=aT,,, for some constant
factor a<1. This is workable but almost never optimal. Bet-
ter schemes rely on statistics observable as annealing pro-
ceeds (e.g., the sampled mean and variance of cost values
seen at the current temperature) to adapt the schedule to
the annealing. In this case, optimal means fast: we want
the fastest possible cooling schedule so that we will per-
form as few moves as possible across the sequence of cool-
ing temperatures. The problem here is to balance the desire
for speed with the need to ensure a solution of good qual-
ity. As with the convergence results, work on schedules
tends to rely on many technical ideas derived from prob-
abilistic (again, often Markov) models of annealing, with
occasional insights from statistical mechanics. A good ref-
erence surveying theoretical work on both convergence and
cooling problems is [7].

Another area of very recent, intense work cuts across all
three basic areas —applications, acceleration, foundations —
and focuses on parallel annealing. The growing availability
of commercial multiprocessor machines suggests that, per-
haps, we can mitigate some of the execution time penalties
associated with annealing approaches. Approaches vary,
but the basic idea is to perform many moves in parallel,
thus exploring more of the configuration space in less time.
Unfortunately, parallel moves may interact; e.g., the wire-
length being computed by one processor is affected by the
fact that another processor is moving a module connected
to this wire. The problem is that it is usually too expensive
in interprocessor communication to have each move broad-
cast minute details of its progress to all other active moves.
Thus, work has focused on managing the errors that occur
when parallel moves interact with each other. Remarkably
enough, experiments with parallel annealing algorithms
show that they are exceedingly tolerant of such errors. Rea-
sonable results have been obtained for a variety of VLSI
layout problems run on a variety of multiprocessors, all
with promising speedups over their counterpart sequential
algorithms. Figure 9 shows results from a parallel version
of the PASHA floorplanner described in the previous sec-
tion. This version runs on a 16-processor message-passing
hypercube multiprocessor [5]. This result is aggressively
parallel, since it uses 8 processors to floorplan only 20 mod-
ules. Work is under way on the many new problems—
analogous to those for serial annealing—posed by these
parallel algorithms: convergence in the face of errors, par-

Philosophical Issues

It is interesting for the introduction of an algorithm to
generate much controversy, but such was the case with
simulated annealing. Much of this controversy seems to
have died down of late as the technique has matured and
proven its utility in many applications. But it is still worth-
while to examine some causes and consequences of this
controversy. We briefly survey such philosophical issues
and offer some opinions in this section.

One major issue was the (incorrect) belief on the part of
some early practitioners that annealing was a panacea for
all optimization problems. Specifically, this view held that
all problems were annealable and that all annealing algo-
rithms were straightforward, even mechanical, to design.
Unfortunately, experimental evidence proved otherwise. Just
as some materials resist physical annealing, some problems

JANUARY 1989

resist simulated annealing (recall the previous discussion
about badly irregular configuration landscapes). Moreover,
there are even applications where annealing gives reason-
able results but is outperformed, either in execution time
or solution quality, by more conventional heuristic ap-
proaches. Even in the applications where it works well,
there is no substitute for cleverness on the part of the an-
nealing algorithm designer (recall our comparison between
direct and indirect floorplanning algorithms). Coupled with
misunderstandings about the (nonexistent) practical guar-
antees provided by theoretical convergence results, these
early beliefs attributed many desirable, but unattainable,
properties to annealing. In fact, annealing is simply another
technique for solving combinatorial optimization problems,
superior to some approaches for some problems, inferior
to others. We regard the major consequence of annealing
as its introduction of an exceedingly novel —and practically
useful —framework for studying and solving a wide spec-
trum of optimization problems.

Perhaps the more interesting philosophical issue con-
cerns the early tensions between proponents of annealing
and proponents of more traditional, “tuned”” heuristic ap-
proaches. More traditionally, solving an optimization prob-
lem required uncovering some essential, subtle structure
that underlies the problem, then using this knowledge to
craft a heuristic solution tuned to the nuances of this struc-
ture. Proponents of this approach have argued that, by this
standard, annealing techniques are essentially inelegant,
brute-force searches through configuration space. More-
over, they argue, annealing exposes no such fundamental
structural insights about the problems to which it is ap-
plied. Proponents of annealing (and this author freely ad-
mits his biases in this direction) argue that, although
heuristics are certainly desirable, they are not available for
all problems of interest to solve. When both clever heuris-
tics and annealing techniques work for a specific problem,
the choice of which to use can be made based on objective
measurements, e.g., execution time and solution quality.
However, for many hard problems, we have no completely
successful heuristics. Indeed, there is growing consensus
that annealing is especially well suited to tackling problems
best described as “dirty,” i.e., problems with either nu-
merous, cont—radictory constraints, or complex, baroque cost
functions. The best tuned heuristics are usually formulated
for clean, rather abstract forms of problems. In contrast,
when move sets and cost functions can be adequately con-
structed, annealing formulations can attack some of these
messy problems directly.

As annealing techniques have matured, however, some
of this tension seems to be evaporating. It is now widely
known that annealing is not a universal solution to all prob-
lems, but it is well established as a successful solution method
for many important classes of problems, e.g., for layout
problems in IC design. Moreover, as annealing becomes
yet another tool in the algorithm designer’s toolbox, it has
begun to appear in concert with other algorithms. We ex-
pect to see more of these kinds of mixed annealing/heuristic
solutions as annealing continues to mature.

Conclusions

Since its introduction in 1982, simulated annealing has
diffused widely into many diverse applications. In IC de-

25



sign, it has been especially successful in layout tasks. Re-
search on both new applications of annealing and on the
theoretical foundations of annealing is progressing on many
fronts. Although not a panacea for all combinatorial opti-
mization problems, annealing has already established itself
as a mature, very useful tool to have in any algorithm de-
signer’s toolbox.

Acknowledgments

I'am grateful to Ron Rohrer and Rajeev Jayaraman of
CMU, and Jonathon Rose of Stanford for helpful comments
on earlier drafts of this paper.

References

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-
680, May 1983.

E. M. Reingold, J. Nevergelt, and N. Deo, Combinatorial Algo-
rithms: Theory and Practice, Prentice-Hall, 1977.

D. W. Jepsen and C. D. Gelatt, Jr., “Macro Placement by Monte
Carlo Annealing,” Proc. IEEE Intl. Conf. on Computer Design,
pp- 495-498, Nov. 1984.

C. Sechen and A. L. Sangiovanni-Vincentelli, “The TimberWolf
Placement and Routing Package,”” IEEE ]. Solid-State Circ., vol.
20, pp. 510-522, 1985.

R. Jayaraman and R. A. Rutenbar, “Floorplanning by Anneal-
ing on a Hypercube Multiprocessor,” Proc. IEEE Intl. Conf. on
CAD, pp. 346-349, Nov. 1987.

D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan
Design,” Proc. 23rd ACM/IEEE Design Automation Conf., pp.
101-107, June 1986.

P.J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing:
Theory and Applications, D. Reidel Publishing, 1987.

A. Sangiovanni-Vincentelli, Design Systems for VLSI Circuits: Logic
Synthesis and Silicon Compilation, G. De Micheli, A. Sangiovanni-
Vincentelli, and P. Antognetti, Eds., Martinus Nijthoff Pub-
lishers, pp. 113-196, “Automatic Layout of Integrated Cir-
cuits,” 1987.

(2]

(3]

[4]

15]

(6]

{7]

=

26

Rob A. Rutenbar received the B.S. degree in electrical and com-
puter engineering from Wayne State University, Detroit, in 1978,
and the M.S. and Ph.D. degrees in computer engineering (CICE)
from the University of Michigan, Ann Arbor, in 1979 and 1984,
respectively.

In 1984, he joined the faculty of Carnegie-Mellon University,
Pittsburgh, Pennsylvania, where he is currently an Assistant Pro-
fessor of Electrical and Computer Engineering, and of Computer
Science. His research interests include VLSI layout algorithms,
parallel architectures and algorithms for CAD, and knowledge-
based approaches to VLSI design, in particular, automatic synthe-
sis of CAD software and automatic synthesis of analog circuits.

In 1987, Dr. Rutenbar received a Presidential Young Investigator
Award from the National Science Foundation. At the 1987 1EEE-
ACM Design Automation Conference, he received a Best Paper
Award. In 1987, he also received the George Tallman Ladd Award
for Excellence in Research from the College of Engineering at Car-
negie-Mellon. Dr. Rutenbar is a member of ACM, Eta Kappa Nu,
Sigma Xi, and AAAS.

IEEE CIRCUITS AND DEVICES MAGAZINE



